A review of studies on the phenomenon of bottom-water coning in oil and gas wells
DOI:
https://doi.org/10.31471/1993-9868-2025-2(44)-114-126Keywords:
bottom water; coning; watering; critical water-free rate.Abstract
Review articles play an important role in scientific research, summarising existing knowledge on a particular topic, assessing its relevance and identifying areas for further research. This paper analyses the results of theoretical and experimental studies on the influence of geological, physical and technological factors on the process of water ingress into production wells during the development of deposits with bottomhole water. The analysis covers a wide range of issues, including forecasting the development of the bottomhole water cone in vertical and horizontal wells, assessing critical water-free oil and gas flow rates, and the influence of formation anisotropy on the rise and fall of the water cone. Particular attention is paid to the effectiveness of various methods of combating water flooding, including limiting pressure depression on the formation, using water-proofing screens, joint extraction of oil or gas together with water, and periodic well operation technology to control the subsidence of the bottomhole water cone. Classic cone formation models, the results of mathematical calculations and their comparative analysis are considered. Particular emphasis is placed on how thoroughly the authors of the studies covered the topic, how critically they approached the evaluation of the research results, and whether they managed to formulate an objective and structured picture of the subject of the study. Based on the results of the analysis, the strengths and weaknesses of existing methods for predicting and combating cone formation of bottom water are identified, as well as their practical significance and prospects for further research in the field of managing the development of oil and gas fields underlain by bottom water. An important aspect of the work is the emphasis on the need for additional research on the patterns of rise and fall of the bottomhole cone during the development of gas and gas condensate deposits. The presented results may be useful both for scientists studying cone formation processes and for engineers working on optimising the development of deposits under water pressure conditions
Downloads
References
1. Кондрат Р.М., Матіїшин Л.І. Аналіз методів боротьби з конусоутворенням у процесі розробки газових і нафтогазоконденсатних родовищ з підошовною водою. Розвідка та розробка нафтових і газових родовищ. 2014. № 2(51). С. 51–60. / Kondrat, R. M., & Matiishyn, L. I. (2014). Analiz metodiv borotby z konusoutvorenniam u protsesi rozrobky hazovykh i naftohazokondensatnykh rodo-vyshch z pidoshovnoiu vodoiu [Analysis of methods for controlling coning in the development of gas and oil and gas condensate fields with bottom water]. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, (2(51)), 51–60. URL: http://nbuv.gov.ua/UJRN/RRNGR_2014_2_8 (дата звернення: 25.11.2025) [in Ukrainian].
2. Довідник з нафтогазової справи. За заг. ред. B.С. Бойка, Р.М. Кондрата, Р.С. Яремійчука. К. Львів. 1996. 620 с. / Boiko, B. S., Kondrat, R. M., & Yaremiichuk, R. S. (Eds.). (1996). Dovidnyk z naftohazovoi spravy [Petroleum and gas handbook]. K. Lviv. [in Ukrainian].
3. Muskat, M., & Wyckoff, R. D. (1935). An Approximate Theory of Water-Coning in Oil Production. Transactions of the AIME, 114(01), 144–163. https://doi.org/10.2118/935144-G.
4. Muskat, M. (1946). The Flow of Homogeneous Fluids Through Porous Media. McGraw Hill Book Company.
5. Muskat, M. (1949). Physical Principles of Oil Production. McGraw-Hill Book Company.
6. Arthur, M. G. (1944). Fingering and coning of water and gas in homogeneous oil sand. Transactions of American Institute of Mining, Metallurgical and Petroleum Engineers, 155(01), 184–201. https://doi.org/10.2118/944184-G.
7. Meyer, H. I., & Gardner, A. O. (1954). Mechanics of Two Immiscible Fluids in Porous Media. Journal of Applied Physics, 25(11), 1400–1406. https://doi.org/10.1063/1.1721576.
8. Chaney, P. E., Noble, M. D., Henson, W. L., & Rice, T. D. (1956). How to Perforate Your Well to Prevent Water and Gas Coning. Oil and Gas Journal, 55, 108–114.
9. Elkins, L. F. (1959). Fosterton Field An Unusual Problem of Bottom Water Coning and Volumetric Water Invasion Efficiency. Transactions of the AIME, 216(01), 130–137. https://doi.org/10.2118/1121-G.
10. Craft, B. C., & Hawkins, M. F. (1959). Applied Petroleum Reservoir Engineering. Prentice Hall.
11. Henley, D. H., Owens, W. W., & Craig, F. F. (1961). A scale-model study of bottom-water drives. Journal of Petroleum Technology, 13(01), 90–98. https://doi.org/10.2118/1539-G-PA.
12. Fortunati, F. (1962). Water coning at the bottom of the well. SPE 544, Technical Note, 1–9.
13. Karp, J. C., Lowe, D. K., & Marusov, N. (1962). Horizontal barriers for controlling water coning. Journal of Petroleum Technology, 14(07), 783–790. https://doi.org/10.2118/153-PA.
14. Smith, C. R., & Pirson, S. J. (1963). Water Coning Control in Oil Wells by Fluid Injection. Society of Petroleum Engineers Journal, 3(04), 314–326. https://doi.org/10.2118/613-pa.
15. Chierici, G. L., Ciucci, G. M., & Pizzi, G. (1964). A Systematic Study of Gas and Water Coning By Potentiometric Models. Journal of Petroleum Technology, 16(08), 923–929. https://doi.org/10.2118/871-PA.
16. Sobocinski, D. P., & Cornelius, A. J. (1965). A Correlation for Predicting Water Coning Time. Journal of Petroleum Technology, 17(05), 594–600. https://doi.org/10.2118/894-PA.
17. Khan, A. R. (1970). A Scaled Model Study of Water Coning. Journal of Petroleum Technology, 22(06), 771–776. https://doi.org/10.2118/2456-PA.
18. Bournazel, C., & Jeanson, B. (1971). Fast Water-Coning Evaluation Method. Fall Meeting of the Society of Petroleum Engineers of AIME, 1–14. https://doi.org/10.2118/3628-ms.
19. Schools, R. S. (1972). An Empirical Formula for the Critical Oil Production Rates. Erdoel-Erdgas, 88(1), 6–11.
20. Miller, R. T., & Rogers, W. L. (1973). Performance of Oil Wells in Bottom Water Drive Reservoirs. Fall Meeting of the Society of Petroleum Engineers of AIME, 1–24. https://doi.org/10.2118/4633-MS.
21. Aziz, K., & Flores, J. (1974). Influence of Production Rate and Oil Viscosity on Water Coning. 25th Annual Technical Meeting of the Petroleum Society of CIM, 1–12. https://doi.org/10.2118/374032.
22. Blades, D. N., & Stright, D. H. (1975). Predicting High Volume Lift Perfonnance In Wells Coning Water. Journal of Canadian Petroleum Technology, 14(04), 62–70. https://doi.org/10.2118/75-04-06.
23. Trimble, A. E., & DeRose, W. E. (1977). Field Application of Water-Coning Theory to Todhunters Lake Gas Field. Journal of Petroleum Technology, 29(05), 552–560. https://doi.org/10.2118/5873-PA.
24. Mungan, N. (1979). Laboratory Study of Water Coning In a Layered Model. Journal of Canadian Petroleum Technology, 18(03), 66–70. https://doi.org/10.2118/79-03-06.
25. Welge, H. J., & Weber, A. G. (1964). Use of Two-Dimensional Methods for Calculating Well Coning Behavior. Society of Petroleum Engineers Journal, 4(04), 345–355. https://doi.org/10.2118/892-PA.
26. Chappelear, J. E., & Hirasaki, G. J. (1976). A Model of Oil-Water Coning for Two-Dimensional, Areal Reservoir Simulation. Society of Petroleum Engineers Journal, 16(02), 65–72. https://doi.org/10.2118/4980-PA.
27. Woods, E. G., & Khurana, A. K. (1977). Pseudofunctions for Water Coning in a Three-Dimensional Reservoir Simulator. Society of Petroleum Engineers Journal, 17(04), 251–262. https://doi.org/10.2118/5525-PA.
28. Trimble, R. H., & McDonald, A. E. (1981). A Strongly Coupled, Fully Implicit, Three-Dimensional, Three-Phase Well Coning Model. Society of Petroleum Engineers Journal, 21(04), 454–458. https://doi.org/10.2118/5738-PA.
29. Kuo, M. C. T. (1983). A Simplified Method for Water Coning Predictions. SPE Annual Technical Conference and Exhibition, 1–14. https://doi.org/10.2118/12067-MS.
30. Kabir, C. S. (1983). Predicting Gas Well Performance Coning Water in Bottom-Water-Drive Reservoirs. SPE Annual Technical Conference and Exhibition, 1–15. https://doi.org/10.2118/12068-MS.
31. Chaperon, I. (1986). Theoretical Study of Coning Toward Horizontal and Vertical Wells in Anisotropic Formations: Subcritical and Critical Rates. SPE Annual Technical Conference and Exhibition, 1–12. https://doi.org/10.2118/15377-MS.
32. Kossack, C. A., Kleppe, J., & Aasen, T. (1987). Oil Production From the Troll Field: A Comparison of Horizontal and Vertical Wells. SPE Annual Technical Conference and Exhibition, 629–641. https://doi.org/10.2118/16869-MS.
33. Abass, H. H., & Bass, D. M. (1988). The Critical Production Rate in Water-Coning System. Permian Basin Oil and Gas Recovery Conference, 351–360. https://doi.org/10.2118/17311-MS.
34. Hoyland, L. A., Papatzacos, P., & Skjaeveland, S. M. (1989). Critical Rate for Water Coning: Correlation and Analytical Solution. SPE Reservoir Engineering, 4(04), 495–502. https://doi.org/10.2118/15855-pa.
35. Giger, F. M. (1989). Analytic Two-Dimensional Models of Water Cresting Before Breakthrough for Horizontal Wells. SPE Reservoir Engineering, 4(04), 409–416. https://doi.org/10.2118/15378-PA.
36. Uebel, T. (1990). A Computer Simulation Study of Water Coning in Gas Wells. MS Thesis. Louisiana State University.
37. Lee, S. H., & Tung, W. B. (1990). General Coning Correlations Based on Mechanistic Studies. SPE Annual Technical Conference and Exhibition, 269–282. https://doi.org/10.2118/20742-MS.
38. Ozkan, E., & Raghavan, R. (1990). A Breakthrough Time Correlation for Coning Toward Horizontal Wells. European Petroleum Conference, 209–218. https://doi.org/10.2118/20964-MS.
39. Yang, W., & Wattenbarger, R. A. (1991). Water Coning Calculations for Vertical and Horizontal Wells. SPE Annual Technical Conference and Exhibition, 459–470. https://doi.org/10.2118/22931-MS.
40. Papatzacos, P., Herring, T. R., Martinsen, R., & Skjaeveland, S. M. (1991). Cone Breakthrough Time for Horizontal Wells. SPE Reservoir Engineering, 6(03), 311–318. https://doi.org/10.2118/19822-PA.
41. Guo, B., & Lee, R. (1993). A Simple Approach to Optimization of Completion Interval in Oil/Water Coning Systems. SPE Reservoir Engineering, 8(04), 249–255. https://doi.org/10.2118/23994-PA.
42. Смоловик Л.Р. Застосування не поршневої схеми для отримання аналітичного розв’язку задачі двофазного витіснення нафти водою. Розвідка та розробка нафтових і газових родовищ. 1994. № 31. С. 47–52. / Smolovyk, L. R. (1994). Zastosuvannia ne porshnevoi skhemy dlia otrymannia analitychnoho rozviazku zadachi dvofaznoho vyrisnennia nafty vodoiu [Application of non-piston scheme for obtaining an analytical solution to the problem of two-phase oil displacement by water]. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, (31), 47–52. [in Ukrainian].
43. Смоловик Л.Р. Про динаміку переміщення вершини конуса підошовної води в нафтових покладах. Розвідка та розробка нафтових і газових родовищ. 1994. № 31. С. 35–40. / Smolovyk, L. R. (1994). Pro dynamiku peremishchennia vershyny konusa pidoshovnoi vody v naftovykh pokladakh [On the dynamics of the displacement of the apex of the bottom water cone in oil reservoirs]. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, (31), 35–40. [in Ukrainian].
44. Hatzignatiou, D. G., & Mohamed, F. (1994). Water And Gas Coning In Horizontal And Vertical Wells. Annual Technical Meeting, 1–15. https://doi.org/10.2118/94-26.
45. Menouar, H. K., & Hakim, A. A. (1995). Water Coning And Critical Rates In Vertical And Horizontal Wells. Middle East Oil Show, 367–379. https://doi.org/10.2118/29877-MS.
46. McMullan, J. H., & Bassiouni, Z. (2000). Optimization of Gas-Well Completion and Production Practices. SPE International Petroleum Conference and Exhibition in Mexico, 1–13. https://doi.org/10.2118/58983-MS.
47. Osisanya, S. O., Recham, R., & Touami, M. (2000). Effects of Water Coning on the Performance of Vertical and Horizontal Wells-A Reservoir Simulation Study of Hassi R'Mel Field, Algeria. Canadian International Petroleum Conference, 1–13. https://doi.org/10.2118/2000-039.
48. Bahrami, H., Shadizadeh, S. R., & Goodarzniya, I. (2004). Numerical Simulation of Coning Phenomena in Naturally Fractured Reservoirs. Iranian Chemical of Engineering Congress, Iran University of Science and Technology, 4844–4853.
49. Siddiqi, S. S., & Wojtanowicz, A. K. (2002). A Study of Water Coning Control in Oil Wells by Injected or Natural FLow Barriers Using Scaled Physical Model and Numerical Simulator. SPE Annual Technical Conference and Exhibition, 1–15. https://doi.org/10.2118/77415-ms.
50. Hernandez, J. C., Wojtanowicz, A. K., & White, C. D. (2006). Effect of Anisotropy on Water Invasion in Edge-Water Drive Reservoirs. Canadian International Petroleum Conference, 1–12. https://doi.org/10.2118/2006-199.
51. Кондрат Р.М., Кондрат О.Р., Смоловик Л.Р. Математичне моделювання процесів збільшення вуглеводневилучення із газових і газоконденсатних покладів з підошовною водою. Розвідка та розробка нафтових і газових родовищ. 2010. № 1(34). С. 30–34. / Kondrat, R. M., Kondrat, O. R., & Smolovyk, L. R. (2010). Matematychne modeliuvannia protsesiv zbilshennia vuhlevodnyevyluchennia iz hazovykh i hazokondensatnykh pokladiv z pidoshovnoiu vodoiu [Mathematical modeling of the processes of increasing hydrocarbon recovery from gas and gas condensate reservoirs with bottom water]. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, (1(34)), 30–34. URL: http://nbuv.gov.ua/UJRN/RRNGR_2010_1_7 (дата звернення: 25.11.2025). [in Ukrainian].
52. Kalam, S., Alnuaim, S. A., & Rammay, M. H. (2016). Application of Artificial Intelligence for Water Coning Problem in Hydraulically Fractured Tight Oil Reservoirs. Offshore Technology Conference Asia, 1–20. https://doi.org/10.4043/26450-MS.
53. Phaiboonpalayoi, C., & Johns, R. T. (2016). Solution to Coning Under Simultaneous Three-Phase Flows for Multiple Vertical Wells. International Petroleum Technology Conference, 1–25. https://doi.org/10.2523/IPTC-18815-MS.
54. Algdamsi, H. A., Agnia, A., & Amtereg, A. (2017). Productivity Assessment and Evaluation of Water Coning Tendency to Support Full Field Development Plan Using Single Well Numerical Model. SPE Kuwait Oil & Gas Show and Conference, 1–17. https://doi.org/10.2118/187557-MS.
55. Jupriansyah, J. (2019). An Integrated Study of Water Coning Control with Downhole Water Sink Completion Approaches in Multilayered Strong Water Drive Reservoir to Improve Oil Recovery. SPE Oil and Gas India Conference and Exhibition, 1–12. https://doi.org/10.2118/194565-MS.
56. Al-Maqsseed, N. H., Anthony, E. P., Elaila, S. Z., Areekat, M., & Fox, M. (2017). Inverted ESPs Actuating: Water Cone Control, Oil Production Increase, and Produced Water Subsurface Disposal North Kuwait Case Study. Abu Dhabi International Petroleum Exhibition & Conference, 1–21. https://doi.org/10.2118/188764-MS.
57. Anthony, E., Elaila, S., Al-Maqsseed, N., & Areekat, M. (2017). Inverted ESP Changing the Game in Water Coning Control in Water Drive Reservoirs North Kuwait Case Study. SPE Annual Technical Conference and Exhibition, 1–16. https://doi.org/10.2118/187292-MS.
58. Carpenter, C. (2015). Optimized Design of Autonomous Inflow-Control Devices for Gas and Water Coning. Journal of Petroleum Technology, 67(12), 70–71. https://doi.org/10.2118/1215-0070-jpt.
59. Stone, T. W., Moen, T., Edwards, D. A., Shadchnev, A., Rashid, K., Kvilaas, G. F., & Christoffersen, K. (2015). Optimized Design of Autonomous Inflow Control Devices for Gas and Water Coning. SPE Reservoir Simulation Symposium, 1–13. https://doi.org/10.2118/173203-MS.
60. Masih, S., Bennett, B., & Savage, M. (2014). The Measurement of Connate Water Chlorides Concentration and Its Effect on Bottom Water Coning Analysis in SAGD for Optimization. SPE Heavy Oil Conference-Canada, 1–9. https://doi.org/10.2118/170166-ms.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Oil and Gas Power Engineering

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
.png)



1.png)








