Retrograde condensation of heavy hydrocarbons in the bottomhole zone

Authors

  • S. V. Matkivskyi Акціонерне Товариство «Укргазвидобування»; 04053, м. Київ, вул. Кудрявська, 26/28, тел./факс (04427) 2-31-15

DOI:

https://doi.org/10.31471/1993-9868-2023-2(40)-15-24

Keywords:

digital modeling, gas condensate reservoir, well, retrograde condensation, bottomhole formation zone, enhanced condensate recovery

Abstract

The relevance of the conducted research is due to the practical lag of the oil and gas industry of Ukraine in the implementation of advanced technologies for the development of gas condensate fields with significant condensate reserves and, accordingly, low actual condensate recovery factors compared to the world level. Currently, Ukraine's economy needs not only to stabilize but also to increase hydrocarbon production levels in order to meet its needs through domestic production. To develop optimal ways to increase the efficiency of production of explored reserves, a study was conducted using digital modeling. The processes of retrograde condensation of liquid hydrocarbons in the bottomhole zone of a reservoir were studied on the basis of a sectoral model of a gas condensate reservoir. Based on the research, it was found that the reservoir properties of the formation and the technological modes of production wells significantly affect the efficiency of condensate production. The lower the permeability of the reservoir, the greater the depression on the formation to ensure the specified hydrocarbon production rates. This results in the creation of a significant pressure drop in the bottomhole zone of the reservoir, which causes intensive processes of retrograde condensation of liquid hydrocarbons. According to the results of the studies, it was found that at a reservoir permeability of 3 mD, the radius of the bottomhole zone saturated with condensed hydrocarbons is 16.5 m, at a permeability of 5 mD - 13.5 m, at a permeability of 10 mD - 11.1 m, and at a permeability of 50 mD - 6.6 m. The saturation of the pore space with condensed hydrocarbons near the wellbore, depending on the permeability of the reservoir, is 34.1%, 33.6%, 30.6% and 24.8%, respectively. Given the above, it can be concluded that the lower the reservoir permeability, the greater the pressure drop in the bottomhole zone of the formation and, accordingly, the saturation of the pore space with condensed hydrocarbons, and thus the greatest losses of liquid hydrocarbons. To increase the efficiency of the extraction of residual condensate reserves, it is necessary to take measures to prevent or slow down the processes of condensate loss in reservoir conditions.

Downloads

Download data is not yet available.

References

Matkivskyi S. Optimization of gas recycling technique in development of gas-condensate fields. Mining of Mineral Deposits. 2023. Vol. 17. Issue 1. Р. 101-107. https://doi.org/10.33271/mining17.01.101

Matkivskyi S.V. Doslidzhennya vplyvu tysku pochatku nahnitannya sukhoho hazu na koefitsiyent kondensatovyluchennya hazokondensatnykh rodovyshch. Naftohazova enerhetyka. 2022. No. 1 (37). P. 41-49. https://doi.org/10.31471/1993-9868-2022-1(37)-41-49 [in Ukrainian]

Thomas F., Holowach N., Zhou X., Bennion D. Optimizing Production From Gas Condensate Reservoirs. Petroleum Society of Canada. Annual Technical Meeting. June 12 – 15. 1994. Р. 1-14. Calgary. Alberta. https://doi.org/10.2118/94-04

Fishlock T., Probert C. Waterflooding of Gas Condensate Reservoirs. Society of Petroleum Engineers. 1996. Р. 245-251. https://doi.org/10.2118/35370-PA

Kondrat R.M. Gazokondensatootdacha plastov. M.: Nedra, 1992. 255 p. [in Ukrainian]

Matkivskyi S., Khaidarova L. Increasing the Productivity of Gas Wells in Conditions of High Water Factors. Eastern Europe Subsurface Conference. Kyiv. Ukraine. 2021. Р. 1-16 https://doi.org/10.2118/208564-MS

Burachok O., Kondrat O., Matkivskyi S. Investigation of the efficiency of gas condensate reservoirs waterflooding at different stages of development. Global Trends, Challenges and Horizons. Dnipro. Ukraine. 2020. Р. 1-11. https://doi.org/10.1051/e3sconf/202123001010

Matkivskyi S., Kondrat O. The influence of nitrogen injection duration at the initial gas-water contact on the gas recovery factor. Eastern-European Journal of Enterprise Technologies. 2021. No 1(6) (109). P. 77–84. https://doi.org/10.15587/1729-4061.2021.224244

Matkivskyi S., Kondrat O. Studying the influence of the carbondioxid einjection period duration on the gas recovery factor during the gas condensate fields development underwater drive. Mining of Mineral Deposits. 2021. Vol. 15. Iss. 2. Р. 95-101. https://doi.org/10.15587/1729-4061.2021.224244

Bikman Ye. Forecasting Hydrocarbon Production at Gas Condensate Fields Considering Phase Transformations of Reservoir Systems. SPE Eastern Europe Subsurface Conference. Kyiv. Ukraine. 2021. Р. 1-7. https://doi.org/10.2118/208562-MS

Kryvulya S. V., Bikman Ye. S., Kondrat O. R., Matkivskyi S. V. Perspektyvy dorozrobky hazokondensatnykh rodovyshch iz znachnymy zapasamy retrohradnoho kondensatu. Naftohazova haluz: Perspektyvy naroshchuvannya resursnoyi bazy: Materialy mizhnarodnoyi naukovo-tekhnichnoyi konferentsiyi. 8-9 hrudnya. 2020. Ivano-Frankivsk. P. 99-102. [in Ukrainian]

Bikman Ye. S., Dyachuk V. V. Optymiza-tsiya system rozrobky hazokondensatnykh rodovyshch Ukrayiny z vysokym vmistom vuhlevodniv S5+ v plastovomu hazi. Problemy naftohazovoyi promyslovosti. 2006. No 3. P. 165–168. [in Ukrainian]

Luo K., Li S., Zheng X., Chen G., Dai Z., Liu N. Experimental Investigation into Revaporization of Retrograde Condensate by Lean Gas Injection. SPE Asia Pacific Oil and Gas Conference and Exhibition. Jakarta. Indonesia. 2001. Р. 1-8. https://doi.org/10.2118/68683-MS

Kossack C. A., Opdal S. T. Recovery of Condensate From a Heterogeneous Reservoir by the Injection of a Slug of Methane Followed by Nitrogen. 63rd Annual Technical Conference and Exhibition of the Socienty of Petroleum Engineers. Houston. Texas. USA. 1988. P. 19-27. https://doi.org/10.2118/18265-MS

Oldenburg С. M., Law D. H., Gallo Y. L. White S. P. Mixing of CO2 and CH4 in Gas Reservoirs: Code Comparison Studies. USA. Canada and New Zealand. 2003. P. 1-5. https://doi.org/10.1016/B978-008044276-1/50071-4

Mamora D. D., Seo J. G. Enhanced Gas Recovery by Carbon Dioxide Sequestration in Depleted Gas Reservoirs. SPE Technical Conference and Exhibition. San Antonio. Texas. 2002. P. 1-9. https://doi.org/10.2118/77347-MS

Burachok O., Kondrat O., Matkivskyi S., Pershyn D. Comparative Evaluation of Gas-Condensate Enhanced Recovery Methods for Deep Ukrainian Reservoirs: Synthetic Case Study. Europec featured at 82nd EAGE Conference and Exhibition, Amsterdam. The Netherlands. 2021. P. 1-8. https://doi.org/10.2118/205149-MS

Boyko V. S., Kondrat R. M., Yare-miychuk R. S. Dovidnyk z naftohazovoyi spravy. Lviv: Svit. 1996. 620 p. [in Ukrainian]

Kondrat R. M., Marchuk Yu. V. Tekhno-logiya i tekhnika ekspluatatsii gazokondensatnykh skvazhin v oslozhnennykh usloviyakh. Razrabotka i ekspluatatsiya gazovykh i gazokondensatnykh mestorozhdeniy. 1989. No 7. P. 1-38. [in Ukrainian]

Kondrat O. R. Eksperymentalni dosli-dzhennya vytisnennya skondensovanykh vuhlevodniv z hazokondensatnykh rodovyshch rozchynamy PAR. Naftova i hazova promyslovistʹ. 2000. No 1. P. 34-38. [in Ukrainian]

Kondrat O. R. Laboratorni doslidzhennya pidvyshchennya vuhlevodnevyluchennya z vysnazhenykh hazokondensatnykh rodovyshch. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. 2000. No 3(56). P. 72-76. [in Ukrainian]

Burachok O. V., Pershyn D. V., Matkivskyi S.V ., Bikman Ye. S., Kondrat O. R. Osoblyvosti vidtvorennya rivnyannya stanu hazokondensatnykh sumishey za umovy obmezhenoyi vkhidnoyi informatsiyi. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. 2020. No 1(74). P. 82-88. https://doi.org/10.31471/1993-9973-2020-1(74)-82-88 [in Ukrainian]

Burachok O. V., Pershyn D. V., Matkiv-skyi S. V., Kondrat O. R. Doslidzhennya mezhi zastosuvannya PVT-modeli “chornoyi nafty” dlya modelyuvannya hazokondensatnykh pokladiv. Mineralni resursy Ukrayiny. 2020. No 2. P. 43-48. https://doi.org/10.31996/mru.2020.2.43-48 [in Ukrainian]

Influence of hydrogen concentration on the properties of gas-hydrogen mixtures and gas-dynamic processes in gas distribution networks

Published

03.04.2024

How to Cite

Matkivskyi, S. V. (2024). Retrograde condensation of heavy hydrocarbons in the bottomhole zone. Oil and Gas Power Engineering, (2(40), 15–24. https://doi.org/10.31471/1993-9868-2023-2(40)-15-24

Issue

Section

SCIENTIFIC AND TECHNICAL PROBLEMS OF PETROLEUM ENGINEERING

Most read articles by the same author(s)

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.