Increasing the economic indicators of diesel engines by transferring them to gas-like products of conversion of methyl alcohol
DOI:
https://doi.org/10.31471/1993-9868-2021-1(35)-67-80Keywords:
diesel engine, oil and gas technological transport, alternative fuel, methanol conversion, heat utilization, exhaust gases, power, specific fuel consumptionAbstract
The work aimed at solving the problem of conversion of existing diesel power drives of oil and gas technological transport into gaseous fuels, which are a cheaper alternative to diesel fuel. A method has been proposed to increase the energy efficiency of alternative fuels. The thermochemical essence of increasing the energy of the source fuel has been developed. The choice of alternative alcohol fuel as a starting product for the conversion process, taking into account its cost and energy value. The calculations showed that the thermal effect from the combustion of converted CO and H2 exceeds the effect from the combustion of the same amount of liquid methanol. Compared to other alternative fuels, the cost of methyl alcohol is low, in addition, when using methanol as a fuel for diesel engines, you can significantly reduce emissions of soot particles and nitrogen oxides. This is due to the fact that the combustion of methanol in the diesel cylinder does not form intermediates that promote the formation of acetylene and aromatic hydrocarbons, which lead to the formation of soot. Methanol is a renewable natural resource, ie there is a large raw material base to increase its production and much wider use as an energy source. Using of this alcohol as an alternative biofuel for vehicles is possible as a result of its production in affordable and cheap ways from agricultural and food waste, from gaseous fuel. Fuel energy and engine power were increased by regenerating the heat of the exhaust gases. Experimental studies of power and economic performance of a diesel engine, which was converted to work on the products of methanol conversion. Experimental studies have shown that the conversion of diesel engines to work using methanol conversion products is justified. Given that the price of methanol is, on average, 10-20% of the cost of diesel fuel, the conversion of diesel engines to work using methanol conversion products is quite profitable.
Downloads
References
Panchuk M., Kryshtopa S., Sladkowski A., Panchuk A., Mandryk I. Efficiency of production of motor biofuels for water and land transport. Nase More 2019. No 66 (3). P. 6–12.
Jurkovič M., Kalina T., Jancosek L., Kadnar R., Gorzelanczyk P., Jerabek K. Proposal of Conversion the Tugboat Engines to Diesel - LNG Operation. Adv. Sci. Technol. Res. J. 2019. No13(4). P. 129–142.
Jovanović S., Knežević M. Theoretical analysis of the cumulative costs of different diesel bus alternatives for a public transport in the city of Belgrade. THERMAL SCIENCE. 2017. No 21, Vol 1B. P. 669-681.
Panchuk M., Kryshtopa S., Panchuk A., Mandryk I., Sladkowski A. Perspectives for developing and using the torrefaction technology in Ukraine. International Journal of Energy for a Clean Environment. 2019. No 20(2). P. 113–134.
Zhanga K., Xin Q., Mu Z., Niu Z., Wanga Z. Numerical simulation of diesel combustion based on n-heptane and toluene. Propulsion and Power Research. 2019. No 8, Vol 2. P. 121-127.
Firmansyaha A. Aziz A. Investigation of Auto-ignition of Several Single Fuels. MATEC Web of Conferences. 4th International Conference on Production, Energy and Reliability. 2014, 13, 02013
Kryshtopa S., Melnyk V., Dolishnii B., Zakhara I., Voitsekhivska T. Improvement of the model of forecasting heavy metals of exhaust gases of motor vehicles in the soil. Eastern-European Journal of Enterprise Technologies. 2019. No4 (10-100). P. 1–8.
Kryshtopa S., Kryshtopa L., Melnyk V., Prunko I., Demianchuk Y. Experimental research on diesel engine working on a mixture of diesel fuel and fusel oils. Transport Problems. 2017. No 12 (2). P. 53–63.
Afanas'ev A., Tret'yakov A. Simulation of diesel engine energy conversion processes. Journal of Mining Institute. 2016. No 222. P. 839-852.
Abbondanza M., Cavina N., Corti E., Moro D., Ponti F., Ravaglioli V. Development of a Combustion Delay Model in the Control of Innovative Combustions. E3S WEB OF CONFERENCES. 2020, 197, 6013.
Cherednichenko, O. Efficiency Analysis of Methanol Usage for Marine Turbine Power Plant Operation Based on Waste Heat Chemical Regeneration. Problemele energeticii regionale. 2019. No 1 (39). P. 102–111.
Bildirici M., Gökmenoğlu S. Environmental pollution, hydropower energy consumption and economic growth: Evidence from G7 countries. Renewable and Sustainable Energy Reviews. 2016. 75. P. 68–85.
Bahman N., Sina F., Shahaboddin S., Kwok-wing C., Timon R. Application of ANNs, ANFIS and RSM to estimating and optimizing the parameters that affect the yield and cost of biodiesel production. Engineering Applications of Computational Fluid Mechanics. 2018. No 12, 1. P. 611–624.
Zhang, Z. Experimental Investigation on Regulated and Unregulated Emissions of a Diesel/ Methanol Compound Combustion Engine with and without Diesel Oxidation Catalyst. Science of the Total Environment. 2010, 408, 4. P. 865-872.
Li, Y. Numerical Study on the Combustion and Emission Characteristics of a Methanol/Diesel Reactivity Controlled Compression Ignition (RCCI) Engine. Applied Energy. 2013. No106, 2. P. 184-197.
Liu, Z. Economic Analysis of Methanol Production from Coal/Biomass Upgrading, Energy Sources Part B-Economics Planning and Policy. 2018. No 13, 1. P. 66-71.
He L., Fu Y., Lidstrom M. Quantifying Methane and Methanol Metabolism of “Methylotuvimicrobium buryatense” 5GB1C under Substrate Limitation. MSYSTEMS. 2019. No 4, 6. P. 748-19.
Mäyrä O., Leiviskä K. Modeling in methanol synthesis, Methanol, Elsevier 2018. P. 475–492.
Yakovlieva A., Boichenko S. Energy Efficient Renewable Feedstock for Alternative Motor Fuels Production: Solutions for Ukraine. Studies in Systems, Decision and Control. 2020. No 298. P. 247-259.
Alarifi A., Alsobhi S., Elkamel A., Croiset E. Multiobjective optimization of methanol synthesis loop from synthesis gas via a multibed adiabatic reactor with additional interstage CO2 quenching, Energy Fuels 2015. No 29, 2. P. 530–537.
Dalena F., Senatore A., Marino A., Gordano A., Basile M., Basile A. Methanol production and applications: An overview, Methanol, Elsevier. 2018. P. 3–28.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Oil and Gas Power Engineering
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.