Generalization of carbon dioxide capture and storage research as part of the Ukrainian energy sector decarbonization

Authors

  • S. V. Matkivskyi JSC UkrGasVydobuvannya

DOI:

https://doi.org/10.31471/1993-9868-2022-2(38)-35-50

Keywords:

global warming, decarbonization, production modernization, technologies, carbon dioxide capture, transportation, oil and gas fields, carbon dioxide storage, increased hydrocarbon recovery

Abstract

The object of the research is technologies for capturing technogenic carbon dioxide and ways of its utilization. The negative effects of global warming, which are manifested by climate change, melting glaciers, and rising ocean levels, require global efforts to reduce the negative impact on the atmosphere. This can be achieved by reducing the share of fossil fuels in the energy balance, introducing technologies for generating electricity from renewable sources, and increasing the energy efficiency of production. Today's society is fully dependent on fossil fuels, and the transition to alternative energy-efficient energy sources requires a lot of money and time, so it is necessary to take drastic measures to slow down the increase in the concentration of carbon dioxide in the atmosphere. To reduce the negative impact on the environment, energy-intensive enterprises with a high rate of industrial greenhouse gas emissions are equipped with technologies for capturing carbon dioxide. These technologies involve capturing carbon dioxide during the combustion of coal or gas and its transportation to a disposal site, followed by its storage without contacting the atmosphere. Carbon dioxide released from flue gases can be used commercially as a raw material for the food and chemical industries. A promising area for utilizing large volumes of carbon dioxide is its use in the oil and gas industry. The results of numerous studies show the technological efficiency of carbon dioxide injection into depleted oil and gas fields to increase their hydrocarbon recovery. The introduction of carbon dioxide injection technologies based on various technological schemes will reduce the concentration of harmful emissions into the atmosphere and increase the efficiency of the development of residual hydrocarbon reserves.

Downloads

Download data is not yet available.

References

Kit Uiiriski. Ulovlyuvannya ta zberihannya vuhletsyu: Ukrayinski perspektyvy dlya promyslovosti ta zabezpechennya enerhetychnoyi bezpeky. Mizhnarodne ekolohichne obyednannya «Billona». 2013. Oslo. Norvehiya. P. 48. [in Ukrainian]

Kuzovkin V.V. Modelirovaniye protsessov vybrosov SO2 i zakhoroneniya uglerodapri neenergeticheskom ispol'zovanii topliva. Zashchita okruzhayushchey sredy v neftegazovom komplekse. 2001. No1. P. 34-38. [in Russian]

Kudrya S.A. Stan ta perspektyvy rozvytku vidnovlyuvanoyi enerhetyky v Ukrayini. Visn. NAN Ukrayiny. 2015. No12. P.19-26. [in Ukrainian]

SPE-77347-MS. Enhanced Gas Recovery by Carbon Dioxide Sequestration in Depleted Gas Reservoirs. D.D. Mamora, J.G. Seo. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, September, 2002. P. 1-9. https://doi.org/10.2118/77347-MS

Kondrat R.M., Seredynskyy D.Yu., Kondrat O.R. Doslidzhennya zastosuvannya vuhlekysloho hazu dlya vyluchennya zalyshkovoyi nafty z obvodnenykh naftovykh pokladiv. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. 2010. No 2(35). P.26-30. [in Ukrainian] https://rrngr.nung.edu.ua/index.php/rrngr/article/view/537

Kondrat R.M., Doroshenko V.M., Kondrat O.R. Osoblyvosti zavershalnoyi stadiyi rozrobky rodovyshch nafty i hazu. Naftohazova enerhetyka. 2010. No1. P.17-21. [in Ukrainian] http://elar.nung.edu.ua/handle/123456789/1303

Rassokhin G.V. Zavershayushchaya stadiya razrabotki gazovykh i gazokondensatnykh mestorozhdeniy. M.: Nedra. 1997. 184 p. [in Russian]

Kyoto Protocol to the United Nations Framework Convention on Climate Change https://unfccc.int/resource/docs/convkp/kpeng.pdf

Paris_agreement. URL: https://unfccc.intsites/default/files/resource/parisagreement_publica tion.pdf

Joris Koornneef, Andrea Ramirez, Toon van Harmelen, Arjan van Horssen, Wim Turkenburg, Andre Faaij. The impact of CO2 capture in the power and heat sector on the emission of SO2, NOx, particulate matter, volatile organic compounds and NH3 in the European Union. Atmospheric Environment, 2010. No 44(11). P. 1369-1385. https://doi.org/10.1016/j.atmosenv.2010.01.022

Akhmedov R.B. Avtonomnoye energosberezheniye neftyanykh mestorozhdeniy s poputnym proizvodstvom SO2 s tselyu povysheniya nefteotdachi i uluchsheniya ekologii. Neftyanoye khozyaystvo. 1998. No9. P. 46-48. [in Russian]

Proizvodstvo oborudovaniya dlya neftegazovoy otrasli. [in Russian] URL: https://gazsurf.com/ru/gazopererabotka/oborudovanie

Khan S.A. Analiz mirovykh proyektov po zakhoroneniyu uglekislogo gaza. Georesursy. 2010. No 4(36). P. 55-62 [in Russian]

Ulavlivaniye i khraneniye dvuokisi ugleroda. Spetsialnyy doklad MGEIK. [in Russian] URL: https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_spm_ts_ru-1.pdf

Pereverzeva S.A., Konosavskiy P.K., Tudvachev A.V., Kharkhordin I.L. Zakhoroneniye promyshlennykh vybrosov uglekislogo gaza v geologicheskiye struktury. Vestnik Sankt-Peterburgskogo universiteta. 2014. No 1(7). P. 5-21. [in Russian]

Slastunov S.V., Karashadze G.G., Kharin YU.V. Model massoperenosa dioksida ugleroda i metana v tekhnologii zakhoroneniya parnikovykh gazov v nekonditsionnykh ugol nykh plastakh. Gornyy informatsionno – analiticheskiy byulleten'. 2009. No 12. P. 359-366.

Matkivskyi S., Kondrat O. The influence of nitrogen injection duration at the initial gas-water contact on the gas recovery factor. Eastern-European Journal of Enterprise Technologies. 2021. Kharkiv. No 1(6 (109). P. 77–84. https://doi.org/10.15587/1729-4061.2021.224244

Balint V., Ban A., Doleshan SH. Primeneniye uglekislogo gaza v dobyche nefti. M.: Nedra, 1977. 240 p. [in Russian]

Kondrat O., Matkivskyi S. Research of the influence of the pattern arrangement of injection wells on the gas recovery factor when injecting carbon dioxide into reservoir. Technology and system of power supply. 2020. Kharkiv. No 5/1 (55). P. 12-17. https://doi.org/10.15587/2706-5448.2020.215074

Matkivskyi S. Effects of the rate of natural gas production on the recovery factor during carbon dioxide injection at the initial gaswater contact. Technology and system of power supply. 2021. Kharkiv. No 1/3 (57). Р. 6-11. https://doi.org/10.15587/2706-5448.2021.225603

Matkivskyi S., Kondrat O., Burachok O. Investigation of the influence of the carbon dioxide (CO2) injection rate on the activity of the water pressure system during gas condensate fields development. Global Trends, Challenges and Horizons. Dnipro. 2020. P. 1-10. https://doi.org/10.1051/e3sconf/202123001011

SPE-59327-MS. CO2 Injection in the Weyburn Field of Canada: Optimization of Enhanced Oil Recovery and Greenhouse Gas Storage With Horizontal Wells. Qamar M. Malik, M.R. Islam. SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, April, 2000. P. 25-33. https://doi.org/10.2118/00-09-01

PETSOC-2003-109. CO2 Flooding in Joffre Viking Pool. K. Pyo, N. Damian-Diaz, M. Powell, J. Van Nieuwkerk. Canadian International Petroleum Conference, Calgary, Alberta, June, 2003. P. 1-30. https://doi.org/10.2118/2003-109

SPE-22362-MS. Review of the 30 Years' Experience of the CO2 Imported Oil Recovery Projects in Hungary. S. Doleschall, A. Szittar, G. Udvardi. International Meeting on Petroleum Engineering, Beijing, China, March, 1992. https://doi.org/10.2118/22362-MS

Poberezhny L., Hrytsanchuk A., Hrytsuliak G., Poberezhna L., Kosmii M. Influence of hydrate formation and wall shear stress on the corrosion rate of industrial pipeline materials. Koroze a Ochrana Materialu. 2018. Vol. 62(4). P. 121-128. https://doi.org/10.2478/kom-2018-0017

NACE Standard RP0775-2005. Item No. 21017. Preparation and Installation of Corrosion Coupons and Interpretation of Test Data in Oilfield Operations. URL: https://webstore.ansi.org/ preview-pages/NACE/preview_NACE+Standard+RP0775-2005.pdf

Det Norske Veritas. Recommended Practice Dnv-Rp-J202. Design And Operation Of CO2 Pipelines. 2010. P. 1-42. URL: https://www.ucl.ac.uk/cclp/pdf/RP-J202.pdf

Professionalnoye proizvodstvo avtotsistern Eurotank. [in Russian] URL: http://eurotank.fi/wp-content/uploads/2019/08/Ven%C3%A4j%C3%A4-2019-Reis.pdf

Europe's largest stock of used iso tankcontainers. URL: https://pdf.directindustry.it/pdf-en/asco-carbon-dioxide/20-iso-tank-container/ 38377-966167.html

Sudna dlya perevezennya dioksydu vuhletsyu. [in Ukrainian] URL: https://uk.wikipedia.org/wiki/Судна_для_перевезення_діоксиду_вуглецю

Matkivskyi S.V. Udoskonalennya tekhnolohiy rozrobky rodovyshch pryrodnykh haziv za vodonapirnoho rezhymu: dys. doktora filosofiyi. Ivano-Frankivsk, 2021. 156 p. [in Ukrainian]

Zhdanov S.A., Maksimov M.M., Khavkin A.YA., Rybitskaya L.P., Tsybul'skaya OT., Gogonenkov G.N., Yevstifeyev V.I., Velichkina N.F., Yudin V.A. Proyektirovaniye razrabotki neftyanykh mestorozhdeniy s ispol'zovaniyem postoyanno deystvuyushchikh geologo-tekhnologicheskikh modeley. Neftyanoye khozyaystvo. 1997. No 3. P. 43-47. [in Russian]

Matkivskyi S.V. Teoretyko-metodolohichni osoblyvosti pobudovy postiyno diyuchykh heoloho-tekhnolohichnykh modeley rodovyshch vuhlevodniv. Mineralni resursy Ukrayiny. Kyiv, 2020. No 4. P. 39-44. [in Ukrainian] https://doi.org/10.31996/mru.2020.4.39-44

Alessandro Romi, Oleksandr Burachok, Mariana Laura Nistor, Charidimos Spyrou, Yerlan Seilov, Omon Djuraev, Serhii Matkivskyi, Denys Grytsai, Olena Goryacheva, Roman Soyma. Advantage of Stochastic Facies Distribution Modeling for History Matching of Multi-stacked Highly-heterogeneous Field of Dnieper-Donetsk Basin. Petroleum Geostatistics. Florence. Italy. 2019. P. 1-5. https://doi.org/10.3997/2214-4609.201902188

L.P. Dake. Fundamentals of Reservoir engineering. Elsevier, Seventeenth Impression. 1998. 443 р.

Matkivskyi S., Burachok O. Impact of Reservoir Heterogeneity on the Control of Water Encroachment into Gas-Condensate Reservoirs during CO2 Injection. Management Systems in Production Engineering. 2022. Vol. 30. Iss. 1. P. 62-68. https://doi.org/10.2478/mspe-2022-0008

Matkivskyi S. Increasing hydrocarbon recovery of Hadiach field by means of CO2 injection as a part of the decarbonization process of the energy sector in Ukraine. Mining of Mineral Deposits. Dnipro. 2022. Vol. 16. Issue 1. Р. 114-120. https://doi.org/10.33271/mining16.01.114

Kondrat O., Matkivskyi S. Research of the influence of the pattern arrangement of injection wells on the gas recovery factor when injecting carbon dioxide into reservoir. Technology and system of power supply. Kharkiv. 2020. No 5/1 (55). P. 12-17. https://doi.org/10.15587/2706-5448.2020.215074

Kryvulya S., Matkivskyi S., Kondrat O., Bikman Y. Approval of the technology of carbon dioxide injection into the V-16 water driven reservoir of the Hadiach field of the water pressure mode (Ukraine) under the conditions of the water pressure mode. Technology and system of power supply. Kharkiv. 2020. No 6/1 (56). P. 13-18. https://doi.org/10.15587/2706-5448.2020.217780

Burachok O., Kondrat O., Matkivskyi S. Investigation of the efficiency of gas condensate reservoirs waterflooding at different stages of development. Global Trends, Challenges and Horizons. Dnipro. 2020. P. 1-11. https://doi.org/10.1051/e3sconf/202123001010

Published

30.12.2022

How to Cite

Matkivskyi, S. V. (2022). Generalization of carbon dioxide capture and storage research as part of the Ukrainian energy sector decarbonization. Oil and Gas Power Engineering, (2(38), 35–50. https://doi.org/10.31471/1993-9868-2022-2(38)-35-50

Issue

Section

SCIENTIFIC AND TECHNICAL PROBLEMS OF PETROLEUM ENGINEERING

Most read articles by the same author(s)

Similar Articles

<< < 29 30 31 32 33 34 35 36 37 38 > >> 

You may also start an advanced similarity search for this article.