Increasing the economic indicators of diesel engines by transferring them to gas-like products of conversion of methyl alcohol

Authors

  • S. І. Kryshtopa Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019
  • L. І. Kryshtopa Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019
  • І. М. Mykytii Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019
  • М. М. Hnyp Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019
  • F. V. Kozak Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019

DOI:

https://doi.org/10.31471/1993-9868-2021-1(35)-67-80

Keywords:

diesel engine, oil and gas technological transport, alternative fuel, methanol conversion, heat utilization, exhaust gases, power, specific fuel consumption

Abstract

The   work   aimed   at   solving   the   problem   of   conversion   of   existing   diesel   power   drives   of   oil   and   gas   technological   transport   into   gaseous   fuels,   which   are   a   cheaper   alternative   to   diesel   fuel.   A   method   has   been   proposed   to   increase   the   energy   efficiency   of   alternative   fuels.   The   thermochemical   essence   of   increasing   the   energy   of   the   source   fuel   has   been   developed.   The   choice   of   alternative   alcohol   fuel   as   a   starting   product   for   the   conversion   process,   taking   into   account   its   cost   and   energy   value.   The   calculations   showed   that   the   thermal   effect   from   the   combustion   of   converted   CO   and   H2   exceeds   the   effect   from   the   combustion   of   the   same   amount   of   liquid   methanol.   Compared to other alternative fuels, the cost of methyl alcohol is low, in addition, when using methanol as a fuel for diesel engines, you can significantly reduce emissions of soot particles and nitrogen oxides. This is due to the fact that the combustion of methanol in the diesel cylinder does not form intermediates that promote the formation of acetylene and aromatic hydrocarbons, which lead to the formation of soot. Methanol is a renewable natural resource, ie there is a large raw material base to increase its production and much wider use as an energy source. Using of this alcohol as an alternative biofuel for vehicles is possible as a result of its production in affordable and cheap ways from agricultural and food waste, from gaseous fuel.  Fuel   energy   and   engine   power   were   increased   by   regenerating   the   heat   of   the   exhaust   gases.   Experimental   studies   of   power   and   economic   performance   of   a   diesel   engine,   which   was   converted   to   work   on   the   products   of   methanol   conversion.   Experimental   studies   have   shown   that   the   conversion   of   diesel   engines   to   work   using   methanol   conversion   products   is   justified.   Given   that   the   price   of   methanol   is,   on   average,   10-20%   of   the   cost   of   diesel   fuel,   the   conversion   of   diesel   engines   to   work   using   methanol   conversion   products   is   quite   profitable.

Downloads

Download data is not yet available.

References

Panchuk M., Kryshtopa S., Sladkowski A., Panchuk A., Mandryk I. Efficiency of production of motor biofuels for water and land transport. Nase More 2019. No 66 (3). P. 6–12.

Jurkovič M., Kalina T., Jancosek L., Kadnar R., Gorzelanczyk P., Jerabek K. Proposal of Conversion the Tugboat Engines to Diesel - LNG Operation. Adv. Sci. Technol. Res. J. 2019. No13(4). P. 129–142.

Jovanović S., Knežević M. Theoretical analysis of the cumulative costs of different diesel bus alternatives for a public transport in the city of Belgrade. THERMAL SCIENCE. 2017. No 21, Vol 1B. P. 669-681.

Panchuk M., Kryshtopa S., Panchuk A., Mandryk I., Sladkowski A. Perspectives for developing and using the torrefaction technology in Ukraine. International Journal of Energy for a Clean Environment. 2019. No 20(2). P. 113–134.

Zhanga K., Xin Q., Mu Z., Niu Z., Wanga Z. Numerical simulation of diesel combustion based on n-heptane and toluene. Propulsion and Power Research. 2019. No 8, Vol 2. P. 121-127.

Firmansyaha A. Aziz A. Investigation of Auto-ignition of Several Single Fuels. MATEC Web of Conferences. 4th International Conference on Production, Energy and Reliability. 2014, 13, 02013

Kryshtopa S., Melnyk V., Dolishnii B., Zakhara I., Voitsekhivska T. Improvement of the model of forecasting heavy metals of exhaust gases of motor vehicles in the soil. Eastern-European Journal of Enterprise Technologies. 2019. No4 (10-100). P. 1–8.

Kryshtopa S., Kryshtopa L., Melnyk V., Prunko I., Demianchuk Y. Experimental research on diesel engine working on a mixture of diesel fuel and fusel oils. Transport Problems. 2017. No 12 (2). P. 53–63.

Afanas'ev A., Tret'yakov A. Simulation of diesel engine energy conversion processes. Journal of Mining Institute. 2016. No 222. P. 839-852.

Abbondanza M., Cavina N., Corti E., Moro D., Ponti F., Ravaglioli V. Development of a Combustion Delay Model in the Control of Innovative Combustions. E3S WEB OF CONFERENCES. 2020, 197, 6013.

Cherednichenko, O. Efficiency Analysis of Methanol Usage for Marine Turbine Power Plant Operation Based on Waste Heat Chemical Regeneration. Problemele energeticii regionale. 2019. No 1 (39). P. 102–111.

Bildirici M., Gökmenoğlu S. Environmental pollution, hydropower energy consumption and economic growth: Evidence from G7 countries. Renewable and Sustainable Energy Reviews. 2016. 75. P. 68–85.

Bahman N., Sina F., Shahaboddin S., Kwok-wing C., Timon R. Application of ANNs, ANFIS and RSM to estimating and optimizing the parameters that affect the yield and cost of biodiesel production. Engineering Applications of Computational Fluid Mechanics. 2018. No 12, 1. P. 611–624.

Zhang, Z. Experimental Investigation on Regulated and Unregulated Emissions of a Diesel/ Methanol Compound Combustion Engine with and without Diesel Oxidation Catalyst. Science of the Total Environment. 2010, 408, 4. P. 865-872.

Li, Y. Numerical Study on the Combustion and Emission Characteristics of a Methanol/Diesel Reactivity Controlled Compression Ignition (RCCI) Engine. Applied Energy. 2013. No106, 2. P. 184-197.

Liu, Z. Economic Analysis of Methanol Production from Coal/Biomass Upgrading, Energy Sources Part B-Economics Planning and Policy. 2018. No 13, 1. P. 66-71.

He L., Fu Y., Lidstrom M. Quantifying Methane and Methanol Metabolism of “Methylotuvimicrobium buryatense” 5GB1C under Substrate Limitation. MSYSTEMS. 2019. No 4, 6. P. 748-19.

Mäyrä O., Leiviskä K. Modeling in methanol synthesis, Methanol, Elsevier 2018. P. 475–492.

Yakovlieva A., Boichenko S. Energy Efficient Renewable Feedstock for Alternative Motor Fuels Production: Solutions for Ukraine. Studies in Systems, Decision and Control. 2020. No 298. P. 247-259.

Alarifi A., Alsobhi S., Elkamel A., Croiset E. Multiobjective optimization of methanol synthesis loop from synthesis gas via a multibed adiabatic reactor with additional interstage CO2 quenching, Energy Fuels 2015. No 29, 2. P. 530–537.

Dalena F., Senatore A., Marino A., Gordano A., Basile M., Basile A. Methanol production and applications: An overview, Methanol, Elsevier. 2018. P. 3–28.

Published

29.06.2021

How to Cite

Kryshtopa S. І., Kryshtopa L. І., Mykytii І. М., Hnyp М. М., & Kozak, F. V. (2021). Increasing the economic indicators of diesel engines by transferring them to gas-like products of conversion of methyl alcohol. Oil and Gas Power Engineering, (1(35), 67–80. https://doi.org/10.31471/1993-9868-2021-1(35)-67-80

Issue

Section

NEW SOLUTIONS IN MODERN EQUIPMENT AND TECHNOLOGIES

Most read articles by the same author(s)

Similar Articles

<< < 21 22 23 24 25 26 27 28 29 30 > >> 

You may also start an advanced similarity search for this article.