EMULATION OF EXPERT APPROACH TO WHSR CURVE-FITTING ON THE BASIS OF MAXIMUM VALIDITY FUZZY MEASURE

Authors

  • Б. І. Ізюмов РГУ нефти и газа им. И.М. Губкина, Россия, 119991, Москва, Ленинский пр-т., 65, тел. (499) 6810102,

Keywords:

expert approach emulation, hydrodynamic research, well, f-regression method.

Abstract

The main aim of well hydrostatic research (WHSR) data analysis is to determine a model of a well, layer and boundaries with the following identification of their parameters. Traditionally this task is performed by an expert who compares real data with typical pressure curves; that is done manually or with a help of special software. Therefore, there arises the task to determine linear areas in WHED data that allows establishing filtration mode dominant on the certain time slot (linear, radial etc.). This article investigates the method of cluster fuzzy regression analysis which is based on maximum validity fuzzy measure. This method uses parameters of explicit basic data uncertainty (f-regression method). The analyzed example has shown that the task traditionally performed by an expert (set of quantity and parameters of curve linear areas) and can be carried out in semi-automated mode by means of proper set of basic data uncertainty and chooses of method parameters for consequent identification of reservoir model and its parameters.

Downloads

Download data is not yet available.

References

1 Bourdet D.P. “Well Test Analysis: the Use of Advanced Interpretation Models”. 1st ed. The Netherlands: Elsevier, 2002.
2 Zadeh L.A. “Generalized theory of uncertainty (GTU) – principal concepts and ideas” // Computational Statistics & Data Analysis. 2006. No. 51. pp. 15-46.
3 Нечеткие множества в моделях управления и искусственного интеллекта / Под ред. Поспелова Д.А.. – М.: Наука, 1986.
4 Tanaka H., Uejima S., and Asai K. “Linear regression analysis with fuzzy model” // IEEE Transaction on System, Man and Cybernetics. 1982. No. 12. pp. 903-907.
5 Kalinina E., Wagenknecht M. “Fuzzy regression analysis and application to a crisp model” // Proceedings of the 8th Zittau Fuzzy Colloquium. Sep 2000. pp. 9-18.
6 Bandemer H., Gottwald S. “Einfuehrung in Fuzzy Methoden” (на немецком). Berlin: Akademie-Verlag, 1989.
7 Celminš A., “Least squares model fitting to fuzzy data”. Fuzzy Sets and Systems, No. 22, 1987. pp. 245-269.
8 Izyumov B. “Application of f-regression method to fuzzy classification problem” // Proceedings of the EUSFLAT Conference, Zittau. 2003. pp. 761-766.
9 Izyumov B., Kalinina E., and Wagenknecht M. “Software tools for regression analysis of fuzzy data” // Proceedings of 9th Zittau Fuzzy Colloquium. 2001. pp. 221-229.
10 Bourdet D.P., Ayoub J.A., and Pirard Y.M., “Use of Pressure Derivative in Well Test Interpretation (SPE 12777)”, SPEFE, 1989. pp. 293-302.

Published

27.10.2013

How to Cite

Ізюмов, Б. І. (2013). EMULATION OF EXPERT APPROACH TO WHSR CURVE-FITTING ON THE BASIS OF MAXIMUM VALIDITY FUZZY MEASURE. Oil and Gas Power Engineering, (2(20), 30–37. Retrieved from https://nge.nung.edu.ua/index.php/nge/article/view/207

Issue

Section

PHYSICAL-TECHNICAL PROBLEMS OF ENERGY CARRIERS RECOVERY

Similar Articles

<< < 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.