Investigation of the deformed state of a rotating drill string within an inclined borehole section

Authors

  • Ya. S. Grydzhuk Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019
  • O. O. Slabyi Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019
  • Ahmed Al-Tanakchi Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019
  • T. I. Kondur Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019
  • I. Yu. Mokhnii Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019

DOI:

https://doi.org/10.31471/1993-9868-2023-2(40)-38-52

Keywords:

stress-strain state, drill string, inclined-directed drilling, Kirchhoff rod theory, simulation modeling.

Abstract

The process of constructing directional wells involves the drill string constantly coming into contact with the well wall. This results in standard forces of weight and viscous resistance to movement, as well as nonlinear spatial forces of contact interaction. These forces cause the drill string to be spatially stressed and deformed, resist movement, and lead to negative dynamic phenomena. To effectively plan the well construction process, it's important to understand these processes. This work focuses on creating a refined mathematical model of the spatial stress-strain state of the drill string located in the inclined well section. The model is developed based on the modified Kirchhoff rod model, which accounts for the axial deformation of the rod. The model takes into account various force factors that act on the drill string during operation, including the force of weight, the force resulting from the deformation of the well wall by the drill string, the friction force between the drill string and the well wall, the force of movement resistance, the lifting force resulting from the movement of the drill string in the mud, and force factors arising from the flow of the mud through the drill string. Based on the proposed mathematical model of drill string deformation, using the numerical method of lines, a simulation model was developed, which makes it possible to study the change in the stress-strain state of the drill string over time. The results of simulation modeling confirmed the adequacy of the created model and the possibility of its application for the analysis of changes in the spatially deformed state of the drill string over time.

Downloads

Download data is not yet available.

References

Fischer F. J. Analysis of Drillstrings in Curved Boreholes: Fall Meeting of the Society of Petroleum Engineers of AIME, Houston, Texas, 6-9 October, 1974. DOI: 10.2118/5071-MS.

Rocheleau D. N., Dareing D. W. Effect of Drag Forces on Bit Weight in High-Curvature Well Bores. Journal of Energy Resources Technology. 1992: Vol. 114 № 3. P. 175–180. DOI: 10.1115/1.2905938.

Wu J., Juvkam-Wold H. C. Helical Buckling of Pipes in Extended Reach and Horizontal Wells—Part 2: Frictional Drag Analysis. Journal of Energy Resources Technology. 1993: Vol. 115 № 3. P. 196–201. DOI: 10.1115/1.2905993.

Wu J., Juvkam-Wold H. C., Lu R. Helical Buckling of Pipes in Extended Reach and Horizontal Wells—Part 1: Preventing Helical Buckling. Journal of Energy Resources Technology. 1993: Vol. 115 № 3. P. 190–195. DOI: 10.1115/1.2905992.

Payne M. L., Abbassian F. Advanced Torque-and-Drag Considerations in Extended-Reach Wells. SPE Drilling & Completion. 1997: Vol. 12 № 01. P. 55–62. DOI: 10.2118/35102-PA.

Ho H.-S. An Improved Modeling Program for Computing the Torque and Drag in Directional and Deep Wells. SPE Annual Technical Conference and Exhibition: SPE Annual Technical Conference and Exhibition, Houston, Texas, 02 - 05 October, 1988. DOI: 10.2118/18047-MS.

Johancsik C. A., Friesen D. B., Dawson R. Torque and Drag in Directional Wells-Prediction and Measurement. Journal of Petroleum Technology. 1984: Vol. 36 № 06. P. 987–992. DOI: 10.2118/11380-PA.

Tikhonov V., Valiullin K., Nurgaleev A., Ring L., Gandikota R., Chaguine P., Cheatham C. Dynamic Model for Stiff String Torque and Drag. SPE/IADC Drilling Conference: SPE Drilling and Completion, Amsterdam, The Netherlands, 05-07 March, 2013. DOI: 10.2118/163566-MS.

Mitchell R. F., Miska S., Aadnøy B. S. Fundamentals of drilling engineering. Richardson, TX: Society of Petroleum Engineers, 2011: Vol. 12: SPE Textbook Series. 710 p. ISBN: 978-1-55563-338-7.

Mason C. J., Chen D. C.-K. Step Changes Needed To Modernize T&D Software. SPE/IADC Drilling Conference: SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 20 - 22 February, 2007. DOI: 10.2118/104609-MS.

Musa N., Gulyayev V., Shlyun N., Aldabas H. Critical Buckling of Drill Strings in Cylindrical Cavities of Inclined Bore-Holes. Journal of Mechanics Engineering and Automation. 2016: Vol. 6 № 1. P. 25–38. DOI: 10.17265/2159-5275/2016.01.004.

Melakhessou H., Berlioz A., Ferraris G. A Nonlinear Well-Drillstring Interaction Model. Journal of Vibration and Acoustics. 2003: Vol. 125 № 1. P. 46–52. DOI: 10.1115/1.1523071.

Tikhonov V. S., Safronov A. I. Analysis of Postbuckling Drillstring Vibrations in Rotary Drilling of Extended-Reach Wells. Journal of Energy Resources Technology. 2011: Vol. 133 № 4 Art. ID 043102. DOI: 10.1115/1.4005241.

Tikhonov V. S., Safronov A. I., Gelfgat M. Y. Method of Dynamic Analysis for Rod-in-Hole Buckling. ASME 8th Biennial Conference on Engineering Systems Design and Analysis: Volume 3: Dynamic Systems and Controls, Symposium on Design and Analysis of Advanced Structures, and Tribology, Torino, Italy, 04 - 07 July, 2006. P. 25–32. DOI: 10.1115/ESDA2006-95059.

Christoforou A. P., Yigit A. S. Dynamic modelling of rotating drillstrings with borehole interactions. Journal of Sound and Vibration. 1997: Vol. 206 № 2. P. 243–260. DOI: 10.1006/jsvi.1997.1091.

Tran Q.-T., Nguyen K.-L., Manin L., Andrianoely M.-A., Dufour R., Mahjoub M., Menand S. Nonlinear dynamics of directional drilling with fluid and borehole interactions. Journal of Sound and Vibration. 2019: Vol. 462 Art. ID 114924. DOI: 10.1016/j.jsv.2019.114924.

Nguyen K.-L., Tran Q.-T., Andrianoely M.-A., Manin L., Baguet S., Dufour R., Mahjoub M., Menand S. Nonlinear rotordynamics of a drillstring in curved wells: Models and numerical techniques. International Journal of Mechanical Sciences. 2020: Vol. 166 Art. ID 105225. DOI: 10.1016/j.ijmecsci.2019.105225.

Wang N., Cheng Z., Lu Y., Jiang W., Zhou J., He B., Ren G. A multibody dynamics model of contact between the drillstring and the wellbore and the rock penetration process. Advances in Mechanical Engineering. 2015: Vol. 7 № 5. P. 1-12. DOI: 10.1177/1687814015582117.

Gulyayev V., Shlyun N. Influence of friction on buckling of a drill string in the circular channel of a bore hole. Petroleum Science. 2016: Vol. 13 № 4. P. 698–711. DOI: 10.1007/s12182-016-0122-5.

Ma Y., Hong D., Cheng Z., Cao Y., Ren G. A multibody dynamic model of the drilling system with drilling fluid. Advances in Mechanical Engineering. 2016: Vol. 8 № 7. P. 1-16. DOI: 10.1177/1687814016656703.

Ren F., Wang B., Zhao L., Zhu A. Experimental Investigation and Analysis of Dynamic Buckling of Drill String in Horizontal Well. Shock and Vibration. 2017: Vol. 2017. P. 1–15. DOI: 10.1155/2017/1658435.

Tikhonov V., Giers M., Yakhimovich V., Shemyakinsky B., Ring L. Multi-component friction testing of full-scale drill pipe specimen. Tribology and Design 2012: Tribology and Design II: WIT Transactions on Engineering Sciences, Kos, Greece, 03 - 05 September, 2012. P. 65–76. DOI: 10.2495/TD120061.

Long Y., Wang X., Wang P., Zhang F. A Method of Reducing Friction and Improving the Penetration Rate by Safely Vibrating the Drill-String at Surface. Processes. 2023: Vol. 11 № 4 Art. ID 1242. DOI: 10.3390/pr11041242.

Wang X., Chen P., Rui Z., Jin F. Modeling Friction Performance of Drill String Torsional Oscillation Using Dynamic Friction Model. Shock and Vibration. 2017: Vol. 2017. P. 1–14. DOI: 10.1155/2017/4051541.

Mitchell R. F. Tubing Buckling—The State of the Art. SPE Drilling & Completion. 2008: Vol. 23 № 04. P. 361–370. DOI: 10.2118/104267-PA.

Sparks C. P. The Influence of Tension, Pressure and Weight on Pipe and Riser Deformations and Stresses. J. Energy Resour. Technol. 1984: Vol. 106. P. 46–54. DOI: 10.1115/1.3231023.

Samuel R., Kumar A. Effective Force and True Force. IADC/SPE Drilling Conference and Exhibition held, San Diego, California, USA, 6–8 March. SPE, 2012. P. 1–9. DOI: 10.2118/151407-MS.

Mitchell R. F. Forces on Curved Tubulars Caused By Fluid Flow. SPE Production & Facilities. 1996: Vol. 11 № 01. P. 30–34. DOI: 10.2118/25500-PA.

Li Z. Fundamental Equations for Dynamical Analysis of Rod and Pipe String in Oil and Gas Wells. SPE Journal. 1999. P. 1–5.

Sun X., Ji X., Li W., Zhang L., Song Y. Dynamic Simulation Analysis of Carbon-Steel Hybrid Sucker Rod String in Vertical and Directional Wells. Mathematical Problems in Engineering. 2022: Vol. 2022. P. 1–14. DOI: 10.1155/2022/5239355.

Wang P., Ni H., Wang X., Wang R., Lu S. Research on the characteristics of earthworm-like vibration drilling. Journal of Petroleum Science and Engineering. 2018: Vol. 160. P. 60–71. DOI: 10.1016/j.petrol.2017.10.027.

Goicoechea H. E., Buezas F. S., Rosales M. B. A non-linear Cosserat rod model for drill-string dynamics in arbitrary borehole geometries with contact and friction. International Journal of Mechanical Sciences. 2019: Vol. 157-158. P. 98–110. DOI: 10.1016/j.ijmecsci.2019.04.023.

Mitchell R. F. Comprehensive Analysis of Buckling With Friction. SPE Drilling & Completion. 1996: Vol. 11 № 03. P. 178–184. DOI: 10.2118/29457-PA.

Lazarus A., Miller J. T., Reis P. M. A quaternion-based continuation method to follow the equilibria and stability of slender elastic rods, 2012. 46 p. (. Preprint. . DOI: 10.48550/arXiv.1212.5739).

Светлицкий В. А. Строительная механика машин. Механика стержней. Москва: ФИЗМАТЛИТ, 2009: Т. 2: Динамика. 384 c. ISBN: 978-5-9221-1143-0.

Gazzola M., Dudte L. H., McCormick A. G., Mahadevan L. Forward and inverse problems in the mechanics of soft filaments. Royal Society open science. 2018: Vol. 5 № 6 Art. ID 171628. DOI: 10.1098/rsos.171628.

Sumer B. M., Fredsøe J. Hydrodynamics around cylindrical strucures. Singapore. London: World Scientific Publishing, 2006: Vol. 26: Advanced series on ocean engineering. 530 p. ISBN: 9812700390.

Bai Y., Bai Q. Subsea pipelines and risers. Amsterdam. London: Elsevier, 2005. 841 p. ISBN: 0-080-4456-67.

Slabyi O. Studying the coupled axial and lateral oscillations of the drilling riser under conditions of irregular seaways. Eastern-European Journal of Enterprise Technologies. 2018: Vol. 3 № 7 (93). P. 27–33. DOI: 10.15587/1729-4061.2018.132661.

Association Modelica. Modelica - A Unified Object-Oriented Language for Systems Modeling, Version 3.3 Revision 1. 2014. URL: https://modelica.org/documents/ModelicaSpec33Revision1.pdf (дата звернення: 26.08.2017).

Meyer G. H. The time-discrete method of lines for options and bonds. New Jersey: World Scientific Pub, 2015. 269 p. ISBN: 978-981-4619-67-7.

Schiesser W. E., Griffiths G. W. A compendium of partial differential equation models. Cambridge. New York: Cambridge University Press, 2009. 474 p. ISBN: 0511576277.

Published

03.04.2024

How to Cite

Grydzhuk, Y. S., Slabyi, O. O., Al-Tanakchi, A., Kondur, T. I., & Mokhnii, I. Y. (2024). Investigation of the deformed state of a rotating drill string within an inclined borehole section. Oil and Gas Power Engineering, (2(40), 38–52. https://doi.org/10.31471/1993-9868-2023-2(40)-38-52

Issue

Section

MATERIALS, STRUCTURES AND EQUIPMENT OF PETROLEUM COMPLEX FACILITIES

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.