Identification of reservoir rocks in the geological section of the Visean deposits of the Lypovodolynske field
DOI:
https://doi.org/10.31471/1993-9868-2025-2(44)-37-45Keywords:
Lypovodolynske field; Viséan deposits; reservoir rocks; terrigenous rocks; carbonate rocks; well logging; geophysical well surveys; allocation of reservoir layers; productive horizons.Abstract
This paper focuses on identifying reservoir rocks within the Viséan deposits of the Lypovodolynske oil and gas condensate field, using an integrated analysis of well logging data (geophysical well surveys, GWS). The Viséan stage consists of lower and upper sublevels of terrigenous-carbonate sequences forming several prospective productive horizons. The study focuses on two types of reservoir rock: terrigenous rocks (such as sandstones and siltstones) and carbonate rocks (such as the limestones of the lower Viséan 'plate'), which differ in terms of their lithological composition, pore space structure and physical properties. Terrigenous reservoirs exhibit relatively uniform porosity and a clear response in geophysical fields, enabling them to be identified efficiently using traditional methods. In contrast, carbonate reservoirs are more difficult to recognise due to heterogeneous porosity, including secondary fracture and cavernous porosity, which affects the representation of geological parameters in GWS data. This work proposes a methodology that comprehensively correlates baseline and normalised (scaled) curves from various geophysical methods (gamma-ray logging, acoustic logging, lateral logging, neutron-gamma logging and pulsed neutron-neutron logging). This improves the accuracy with which reservoir layers can be identified. This approach identifies potential reservoir intervals when the normalised curve values exceed the baseline, enabling precise delineation of terrigenous and carbonate layers. Well No. 26-Lypovodolynska was used as a case study to construct a logging curve panel and determine reservoir intervals, with the results confirmed by actual oil and gas inflows. The study reveals that different combinations of logging curves yield slightly different reservoir intervals, indicating the presence of multiple porosity types within the geological section. Analysis of current international and Ukrainian research indicates that combining different GWS methods with mathematical models and machine learning techniques is the most effective way to enhance reservoir identification in complex carbonate formations. The results confirm the practical effectiveness and applicability of the proposed methodology in geological modelling, resource assessment and field development planning in oil and gas condensate fields with similar geological conditions. The study also emphasises the need to further develop integrated GWS data interpretation techniques adapted to the local features of reservoir rocks, in order to improve the accuracy with which they can be identified within the geological sections of wells.
Downloads
References
1. Ftemov, Ya. M. (2015). Vydilennia naftonasichenykh poridkolektoriv karbonatnoho skladu na prykladi Lopushnianskoho rodovyshcha. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, (4)56, 46-56. [in Ukrainian].
2. Carrasquilla, A., Lima, L., & Almeida, P. (2020). Basic and specialized geophysical well logs to characterize an offshore carbonate reservoir in the Campos Basin, southeast Brazil. Journal of Petroleum Science and Engineering, 195, 107743. https://doi.org/10.1016/j.petrol.2020.107743
3. Wibowo, R. C., Putri, A. C. E., & Dewanto, O. (2023). Analysis of Unconventional Oil and Gas Reservoirs using Well Logging, Geochemical and Seismic Data: Analisis Reservoar Migas Non-Konvensional Menggunakan Data Well Logging, Geokimia, dan Seismik. Journal geocelebes, 7(2), 154-167. https://doi.org/10.20956/geocelebes.v7i2.20603
4. Hou, X., Lian, P., Zhao, J., Zai, Y., Zhu, W., & Wang, F. (2024). Identification of carbonate sedimentary facies from well logs with machine learning. Petroleum Research, 9(2), 165-175. https://doi.org/10.1016/j.ptlrs.2024.01.007
5. Mohammadi, M., Emami Niri, M., Bahroudi, A., Soleymanzadeh, A., & Kord, S. (2025). Enhancing formation resistivity factor estimation in carbonate reservoirs using electrical zone indicator and multi resolution graph based clustering methods. Scientific Reports, 15, 30823. https://doi.org/10.1038/s41598-025-16576-3
6. Koval, Ya. M., Fedak, I. O., Fedoriv, V. V., & Yaremak, R. T. (2024). Vydilennia poridkolektoriv u heolohichnomu rozrizi stryiskykh vidkladiv Verkhniomaslovetskoho rodovyshcha. Naftohazova enerhetyka, 1(41), 29-37. [in Ukrainian]. https://doi.org/10.31471/1993-9868-2024-1(41)-29-37
7. Senosy, A. H., Ewida, H. F., Soliman, H. A., et al. (2020). Petrophysical analysis of well logs data for identification and characterization of the main reservoir of Al Baraka Oil Field, Komombo Basin, Upper Egypt. SN Appl Sci, 2, 1293. https://doi.org/10.1007/s42452-020-3100-x
8. Koval, Ya. M., & Fedak, I. O. (2020). Vydilennia nyzkoomnykh poridkolektoriv u
heolohichnomu rozrizi helvetskykh vidkladiv Letnianskoho rodovyshcha. Naftohazova enerhetyka, 2(34), 29-37. [in Ukrainian]. https://doi.org/10.31471/1993-9868-2024-1(41)-29-37
9. Koval, Ya. M., & Fedak, I. O. (2022). Vydilennia plastiv polimiktovykh piskovykiv u skladno-pobudovanomu heolohichnomu rozrizi naftohazovykh sverdlovyn Dniprovsko-Donetskoi zapadyny. Naftohazova enerhetyka, 1(37), 7-14. [in Ukrainian]. https://doi.org/10.31471/1993-9868-2022-1(37)-7-14
10. Bezrodna, I., & Yemets, V. (2025). Features of the void space structure of Upper Visean and Lower Visean-Tournaisian reservoir rocks in the marginal zone of the Dnipro-Donets Basin. In XVIII International Scientific Conference “Monitoring of Geological Processes and Ecological Condition of the Environment”. https://doi.org/10.3997/2214-4609.2025510164
11. Heolohoekonomichna otsinka zapasiv Lypovodolynskoho naftohazokondensatnoho rodovyshcha v Sumskii oblasti: Zvit NDR za nariadzamovlenniam №210632. (2016). (Vynnyk, M. M., Vidp. vyk.). NDPI PAT «Ukrnafta». [in Ukrainian].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Oil and Gas Power Engineering

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
.png)



1.png)








