STRUCTURE AND PROPERTIES OF POLYMER COMPOSITE MATERIALS BASED ON POLYLACTIDE AND CARBON FILLERS
DOI:
https://doi.org/10.31471/1993-9868-2024-2(42)-99-106Keywords:
carbon nanotubes, thermally expanded graphite, polymer composites, thermophysical and mechanical properties, the degree of crystallinity.Abstract
Additive technologies are widely used in various areas of manufacturing. The main problem limiting their use is the insufficient level of physical, mechanical and operational properties. The aim of this work was to investigate the influence of different types of carbon fillers on the microstructure and functional properties of polymer compo-sites, which can be used in the future as filaments for 3D printing. The methods of optical microscopy, differential scanning calorimetry and mechanical analysis were used to investigate the microstructure, thermophysical and mechanical properties of polymer composite systems based on polylactide and carbon fillers – carbon nanotubes (CNTs) and thermally expanded graphite (TEG). From the optical microscopy data, it was found that at a content of 0.5% for CNT and 1% for TEG in the system, a percolation transition is observed, in which clusters of filler particles permeate the entire volume of the material. Calorimetric studies show that the melting, cold crystallisation and glass transition temperatures, as well as the degree of crystallinity, reach minimum values at a filler content of 0.5% for CNT and 1% for TEG. It is the surface of the filler that has a decisive influence on the thermophysical properties of the composites studied. The maximally developed surface of the filler, which occurs during the formation of a percolation cluster, complicates the processes of movement of the macromolecules and prevents their formation of crystalline structures. The type and content of carbon filler also affects the mechanical strength of the resulting materials. When the percolation concentration of the filler is reached, the strength increases by about 30%, which makes the composite materials promising for use as filaments for additive tech-nologies.
Downloads
References
1. Arrillaga Tamez M. B., Taha I. A review of additive manufacturing technologies and markets for thermosetting resins and their potential for carbon fiber integration. Additive Manufacturing. 2021. Vol. 37. Р. 101748. DOI: 10.1016/j.addma.2020.101748
2. Omiyale B. O., Kayode Farayibi P. Additive manufacturing in the oil and gas industries: A review. Analecta Technica Szegedinensia. 2020. Vol. 14 (1). Р. 9–18. DOI: 10.14232/analecta.2020.1.9-18
3. Arumugam S., Ju Y. Carbon nanotubes reinforced with natural/synthetic polymers to mimic the extracellular matrices of bone – a review. Mater. Today Chem. 2021. Vol. 20. Р. 100420. DOI: 10.1016/j.mtchem.2020.100420
4. Farah S., Anderson D. G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv. Drug Deliv. Rev. 2016. Vol. 107. Р. 367–392. DOI: 10.1016/j.addr.2016.06.012
5. Yu B., Meng L., Fu S., Zhao Z., Liu Y., Wang K. Morphology and internal structure control over PLA microspheres by compounding PLLA and PDLA and effects on drug release behavior. Colloids Surf B. 2018. Vol. 172. Р. 105–112. DOI: 10.1016/j.colsurfb.2018.08.037
6. Arockiam A. J., Subramanian K., Padmanabhan R. G. et al. A review on PLA with different fillers used as a filament in 3D printing. Materials Today: Proceedings. 2022. Vol. 50, P. 5. P. 2057–2064. DOI: 10.1016/j.matpr.2021.09.413
7. Patanwala H. S., Hong D., Vora S. R., Bognet B., Ma A. W. K. The Microstructure and Mechanical Properties of 3D Printed Carbon Nanotube-Polylactic Acid Composites. Polymer Composites. 2018. Vol. 39, Is. S2. P. E1060–E1071. DOI: 10.1002/pc.24494
8. Kaczor D., Fiedurek K., Bajer K. et al. Impact of the Graphite Fillers on the Thermal Processing of Graphite/Poly(lactic acid) Composites. Materials. 2021. Vol. 14. P. 5346. DOI: 10.3390/ma14185346
9. Murariu M., Dechief A. L., Bonnaud L. et al. The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability. 2010. Vol. 95, Is. 5. P. 889–900. DOI: 10.1016/j.polymdegradstab.2009.12.019
10. Kumar S. Investigating effect of CNT agglomeration in CNT/polymer nanocomposites using multiscale finite element method. Mechanics of Materials. 2023. Vol. 183. Р. 104706. DOI: 10.1016/j.mechmat.2023.104706
11. Dinzhos R. V., Fialko N. M., Lysenkov E. A. Analysis of the Thermal Conductivity of Polymer Nanocomposites Filled with Carbon Nanotubes and Carbon Black. J. of Nano- Electron. Phys. 2014. Vol. 6, No 1. Р. 01015.
12. Lisunova M. O., Mamunya Ye. P., Lebov-ka N. I., Melezhyk A. V. Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur. Polym. J. 2007. Vol. 43, Is. 3. Р. 43949–43958. DOI: 10.1016/j.eurpolymj.2006.12.015
13. Lysenkov E. A., Homza Yu. P., Davydenko V. V., Klepko V. V. Struktura ta teplofizychni vlastyvosti system na osnovi olihoetylenhlikoliu ta anizometrychnykh nanonapovniuvachiv. Polimernyi zhurnal. 2010. T. 32, No 2. Р. 99–104. [in Ukrainian]
14. Barrau S., Vanmansart C., Moreau M., et al. Crystallization Behavior of Carbon Nantube−Polylactide Nanocomposites. Macro-molecules. 2011. Vol. 44, No 16. Р. 6496–6502. DOI: 10.1021/ma200842n
15. Hadzreel M. R. A. M., Aisha, I. S. R. Effect of Reinforcement Alignment on The Properties of Polymer Matrix Composite. Journal of Mechanical Engineering and Sciences. 2013. Vol. 4, Р. 548–554. DOI: 10.15282/jmes.4.2013.18.0051
16. Wang Q., Han X. H., Sommers A. et.al. A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks. International Journal of Refrigeration. 2012. Vol. 38. P. 7–26. DOI: 10.1016/j.ijrefrig.2011.09.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Oil and Gas Power Engineering
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.