Improvement of the well jet pump design

Authors

  • D. O. Panevnyk Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019

DOI:

https://doi.org/10.31471/1993-9868-2022-2(38)-76-84

Abstract

The main schemes of creating circulating flows in the flowing part of the jet pump with the use of a vane, screw and tangential guide elements, which increase the energy efficiency of downhole ejection systems. The creation of circulating currents in the jet pump flowing part makes it possible to reduce energy losses during the mixing off lows and increase the pressure created by the ejection system. It is established that the composition of ejection systems includes local and linear hydraulic supports in the form of throttle elements, flushing nozzles, and the jet pump pressure line. It is shown that in modern designs of well ejection systems, it is expedient to use two main schemes for creating circulation flows: swirling of working and injected flows. A method for selecting the flow swirling scheme in the jet pump flow part for modern well ejection systems is developed, taking into account the design of concentrated and linear resistances in the hydraulic channels of the working and injected flow. It is expedient to use swirling of a working stream in designs of suction and injection-suction devices for drilling and in packer and two-pipe devices for oil production. Swirling the injected flow can be recommended for use in the design of injection and suction devices for drilling and combined pumping units for oil production. Vortex above-bit jet pumps of injection and suction type help to reduce the well drilling cost. The use of vortex injection systems of the injection-suction type contributes to the growth of well productivity. Flow swirling in the flowing part of oilfield jet pumps helps to increase oil production and reduce the production cost of gross output.

Downloads

Download data is not yet available.

References

Shoukry A., Pugh T. Weatherford Artificial Lift Systems. Weatherford International. 2011. 24 p. www.summitdownloadportal.com./logos/1290602355.

Kazak A.S., Rosin I.I., Chicherov I.G. Pogruzhnyie bezshtangovyie nasosyi v dobiche nefti. Moskva: Nedra, 1978. 232 p. [in Russian]

Gosline J., O`Brien M. The water jet pump. University of California Publicationsin Engineering. 1934. Vol. 3. No 3. P. 167–190.

Cunningham R.G., Riser W. Jet-pump theory and performance with fluidofhi viscosity. Transactions ASME. 1957. Vol. 79. P. 1807-1820.

Derusov V.P. Obratnaya promyivka pri burenii geologorazvedochnyih skvazhin. M.: Nedra, 1984. 184 p. [in Russian]

Zhu H. Y., Liu Q.Y. Pressure drawdown mechanism and design principle of jet pump bit. Scientia Iranica (Transactions B: Mechanical Engineering). 2015. No 22(3). P. 792–803.

Cholet H., Grausse R. Improved hydraulics for rock bits. Proceeding of Annual Fall Technical Conference and Exhibition of the Society of Petroleum Engineers of AIME, Houston, USA, October 1-3 1978. SPE 7516. 8 p.

Anikin B.N. O koeffitsiente polenogo deystviya ezhektornogo nasosa. Gidrotransport i sudove sistemyi. Kaliningrad, 1989. P. 15–21. [in Russian]

Velez R.P., Vásquez-Santacruz J., Marín-Urías L., Vargas A., García-Ramírez P., Morales-de-la-Mora J., Vite-Morales A., Gutierrez-Domínguez E. Efficiency Maximization of a Jet Pump for an Hydraulic Artificial Lift System. Scipedia. 2019. Vol. 35. No 1. 12 p. https://doi.10.23967/j.rimni.2018.11.002.

Yapıc R.,Aldas K. Optimization of water jet pumpsusing numerical simulation. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy . 2013. Vol. 227. No 4. P. 438–449. https://doi.org/10.1177/0957650913487529.

Xu K., Wang G., Wang L., Yun F., Sun W., Wang X., Chen, X. Parameter Analysis and Optimization of Annular Jet Pump Basedon Kriging Model. Applied Sciences, 2020. Vol. 10. No 21. 16 p. https://doi.org/10.3390/app10217860.

Xu K., Wang G., Zhang L., Wang L., Yun F., Sun W., Wang X., Chen X. Multi-Objective Optimization of Jet Pump Basedon RBF Neural Network Model. Journal of Marine Science and Engineering. 2021. Vol. 9. No. 236. 18 p. https://doi.org/10.3390/jmse9020236.

Panevnik D.O. Povyishenie energeticheskoy effektivnosti ispolzovaniya neftyanyih struynyih nasosov. Energetika. Izv. vyissh. ucheb. zavedeniy i energ. ob'edineniy SNG. 2022. Vol. 65. No 2. P. 181–192. https://doi.org/10.21122/1029-7448-2022-65-2-1-92. [in Russian]

Panevnik D.A., Panevnik A.V. Povyishenie energoeffektivnosti ispolzovaniya skvazhinnyih struynyih nasosov. Energetika. Izv. vyissh. ucheb. zavedeniy i energ. obedineniy SNG. 2020. Vol. 63. No 5. P. 462–471. [in Russian]

Zhu H. Y., Liu Q.Y., Wang T. Reducing the bottom-hole differential pressure by vortex and hydraulic jet methods. Journal of Vibroengineering. 2014. No 8. Р. 2224–2249.

Suryanarayana P. V., Hasan K., Hughes W.I. Technical Feasibility and Applicability of a concentric jet pump in underbalanced drilling: proceeding of the SPE/IADS Underbalanced Technology Conference and Exhibition, Houston, USA, 11-12 october 2004. SPE/IADS 91595. 20 p.

Chen X., Gao D., Guo B. A method for optimizing jet-mill-bit hydraulics in horizontal drilling. SPE Iournal. 2016. № 4. SPE 178436. P. 416–422.

Panevnyk D.O. Analiz doslidzhen vplyvu zakruchuvannia potoku na kharakterystyku sverdlovynnykh strumynnykh nasosiv. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. 2020. No 4(77). P. 31-40. https://doi.org/10.31471/1993-9973-2020-4(77)-31-40. [in Ukrainian]

Panevnyk D.A. Study on characteristics of a downhole vortex jet pump. Romanian Journal of Petroleum&Gas Technology. 2021. Vol. II (LXXIII). No. 2. 10 p. https://doi.org/10.51865/JPGT.2021.02.03.

Shen J., Wu X., Wang J. Application of composite jet-rod pumping system in a deep heavy-oil field in Tarim China: proceeding oft he SPE Annual Technical Conference and Exhibition, Florence (Italy), 19-22 September 2010. SPE 134068. 8 p.

Vytvytskyi Ya.S., Andriichuk I.V., Lesiuk O.I., Vytvytska I.Ia., Charkovskyi V.M. Orhanizatsiia i planuvannia operatsiinoi diialnosti naftovykh pidpryiemstv. Ivano-Frankivsk: IFNTUNH. 2009. 364 p. [in Ukrainian]

Ekonomika naftohazovykh pidpryiemstv / Vytvytskyi Ya.S., Vytvytska U.Ia., Metoshop I.M., Kuzmin V.M. and oth; za red. Ya.S. Vytvytskoho ta M.O. Danyliuka. Ivano-Frankivsk: Symfoniia forte, 2013. 604 p. [in Ukrainian]

Mysliuk M.A., Rybchych I.I., Yaremiichuk R.S. Burinnia sverdlovyn. U 5 t. Tom 1: Zahalnividomosti. Burovi ustanovky. Obladnannia ta instrument.K.: InterpresLTD, 2002. 367 p. [in Ukrainian]

Published

30.12.2022

How to Cite

Panevnyk, D. O. (2022). Improvement of the well jet pump design . Oil and Gas Power Engineering, (2(38), 76–84. https://doi.org/10.31471/1993-9868-2022-2(38)-76-84

Issue

Section

MATERIALS, STRUCTURES AND EQUIPMENT OF PETROLEUM COMPLEX FACILITIES