PROSPECTS FOR INTRODUCING BIOMASS PYROLYSIS TECHNOLOGIES TO INCREASE OF VOLUMES BIOFUEL PRODUCTION

Authors

  • A. M. Panchuk Ivano-Frankivsk National Technical University of Oil and Gas, Carpathians Street 15, Ivano-Frankivsk, UA 76019 Ukrainee
  • M. V. Panchuk Ivano-Frankivsk National Technical University of Oil and Gas, Carpathians Street 15, Ivano-Frankivsk, UA 76019 Ukrainee
  • R. O. Deineha Ivano-Frankivsk National Technical University of Oil and Gas, Carpathians Street 15, Ivano-Frankivsk, UA 76019 Ukrainee

DOI:

https://doi.org/10.31471/1993-9868-2024-2(42)-137-145

Keywords:

renewable energy, fossil fuels, pyrolysis technologies, bio-oil.

Abstract

In the presented work, a quantitative and qualitative review was carried out, which showed the possibility of increasing of volumes the production and use of renewable energy due to the presence of a significant raw material base and the introduction of biomass pyrolysis technologies. This approach allows for a significant saving of fossil fuel and energy resources and improves the state of the environment. Along with the analysis of the current state of the pyrolysis process, the history of its development and the relevance of its use for energy purposes, starting from ancient times, including in the Trypil settlements on the territory of modern Ukraine, are given. It has been shown that for maximum char yield during pyrolysis a low process temperature and a low heating rate are necessary; for obtaining a liquid phase – a high heating rate, a low process temperature and a short duration, and for maximum output of generator gas – a high temperature and a low heating rate. The characteristics of pyrolysis product recovery and mass yields are given and their technical properties are presented. The comparative characteristics of bio-oil pyrolysis fuel and traditional liquid fuels were carried out. It was found that the cost of bio-oil and charcoal in terms of useful energy is lower compared to fossil coal, wood and torified pellets. Therefore, the use of these products for energy purposes has considerable prospects. A number of energy applications of pyrolysis products have been identified, the most promising of which are: use of bio-oil in diesel and gas turbine engines, in boilers; its combined combustion with fossil coal and natural gas; and gasification of pyrolysis liquid. It is shown that the industrial use of biomass pyrolysis technologies is a new, promising direction in bioenergetics and is currently at an early stage of development.

Downloads

Download data is not yet available.

References

1. Panchuk M., Kryshtopa S., Shlapak L., Kryshtopa L., Panchuk A., Yarovyi V., Sladkowski A. Main trend of biofuls Production in Ukraine. Transport Problems. 2017. No 12 (4). P. 95-103.

2. Kryshtopa S., Panchuk M., Kozak F., Dolishnii B., Mykytii I., Hnyp M., Skalatska О. Fuel ekonomi raising of alternative fuel converted diesel engines. Easten-european journal of enterprprise technologies. 2018. No 8 (94). P.6-13.

3. Mandryk O.M., Arkhypowa L. M., Pobigun O.V., Maniuk O.R. Renewable energy sources for sustainable tourism in the Carpation region. IOP Publishing. IOP Conf. Series: Mate-rials Science and Engineering 144(2016)012007. Internacional Conference on Innovative Ideas in Science (IIS2015) 12-13 November, Baia Mare, Romania. Volume 144. August 2016. DOI: 10.1088/1757-899X/144/1/012007

4. Geletukha G.G., Zhelezna T.A. State and Prospects of Bioenergy development in Ukraine. Industrial Heat Engineering. 2017. No 39(2). P. 60-64. [in Ukrainian]

5. Panchuk M., Kryshtopa S., Shlapak L. et al. Main trend of biofuelsproduction in Ukraine. Transport Problems. 2017. Vol. 12. No. 4. P. 95-103.

6. Kryshtopa S., Kryshtopa L., Melnyk V., Dolishnii B., Prunko I., Demianchuk Y. Experi-mental Research on Diesel Engine Workingon a Mixtureof Diesel Fueland Fusel Oils. Transport Problems. 2017. No 12 (2). P.53-63.

7. Panchuk M., Kryshtopa S., Panchuk A. Perspectives for torrefaction technology develop-ment and using in Ukraine. Inter J Ener Clean Env. 2019. Vol. 20. P. 113–134.

8. Venderbosch R.H., Prins W. Fast pyrolysis technology developmentIn. Biofuels, Bioproducts and Biorefining. 2010. P. 178-208. Published Online: 19 March 2010. https://doi.org/10.1002/bbb.205

9. Girio F.M., Fonseca C., Carvalheiro, F., Duarte L.C., Marques S., Bogel-Łukasik R. Hamicelluloses for fuel ethanol: A review. Bioresour. Technol. 2010. No. 101. P. 4775-4800.

10. Demirbas A. Products from lignocellulosic materialsvia degradation processes. Energy Source Part A. 2008. No 30. P. 27–37. DOI: 10.1080/00908310600626705

11. Rowell R.M., Pettersen R., Han J.S., Rowell J.S. , Tshabalala M.A. Handbook of Wood Chemistry and Wood Composites. Cell Wall Chemistry. Cell Wall Chemistry. CRC Press, Chapter 3, 2005. P. 487.

12. Antal M.J., Grönli M. The art, science, and technology of charcoal production. Industrial and Engineering Chemistry Research. 2003. No 42(8). P. 1619-1640. DOI: 10.1021/ie0207919

13. Mohan D., Pittman C. U., Steele P. H. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006. No 20. P.848–889. DOI: 10.1021/ef050239

14. Fisher T., Hajaligol M., Waymack B., Kellogg D. Pyrolysis behaviour and kinetics of biomass derived materials. J. Appl. Pyrolysis, 2002. P. 331–349.

15. Basu P. Biomass gasification and pyrolysis: practical design and theory. Academic Press, 2010. 365 p.

16. Demirbas A. Partly chemical analysis of liquid fraction of flash pyrolysis products from biomass in the presence of sodium carbonate. Energy Convers Manage. (2002) 43:1801–9. https://doi.org/10.1016/S0196-8904(01)00137-6

17. Balat M., Kirtay E., Balat H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conv. Manag. 2009. Vol. 50. P. 3147–3157. http://dx.doi.org/10.1016/j.enconman.2009.08.014

18. Demirbas A. Determination of calorific values of bio-chars and pyro-oils from pyrolysis of beech Trunkbarks. J Anal Appl Pyrol. 2004. 72:215–9. https://doi.org/10.1016/j.jaap.2004.06.005

19. Demibas A., Arin G. An overview of biomass pyrolysis. Energy Source. Part A. 2002. Vol. 24. P. 471–482.

20. Brammer J.G., Lauer M., Bridgwater A.V. Opportunities for biomass-derived “bio-oil” in European heat and power markets. Energy Policy. 2006ю Vol. 34. P. 2871–2880. https://doi.org/10.1016/j.enpol.2005.05.005.

21. Chiaramonti D., Oasmaa A., Solantausta Y. Power generation using fast pyrolysis liquids from biomass. Renew. Sustain. Energy Rev. 2007. Vol. 11. P. 1056–1086. https://doi.org/10.1016/j.rser.2005.07.008

22. Lanzetta M., Blasi D.C. Pyrolysis kinetics of wheat and corn straw. J. Anal. Appl. Pyrolysis. 1998. Vol. 44. P. 181–192. https://doi.org/10.1016/S0165-2370(97)00079-X

23. Mohan D., Pittman C. U., Steele P. H. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006, 20:848–889. DOI: 10.1021/ef050239

24. Akmaz S., Gurkaynak M. A., Yasar M. The effect of temperature on the molecular structure of Raman asphaltenes during pyrolysis. Journal of Analytical and Applied Pyrolysis. 2012. Vol. 96. P. 139-145. https://doi.org/10.1016/j.jaap.2012.03.015

25. Kern S., Halwachs M., Kampichler G. Pfeifer C., Pröll T., Hofbauer H. Rotary kiln pyrolysis of straw and fermentation residues in a 3MW pilot plant – Influence of pyrolysis temperature on pyrolysis product performance. Journal of Analytical and Applied Pyrlysis. 2012. Vol. 97. P. 1-10.

26. Dobele G., Urbanovich I., Volpert A., Kampars V., Samulis E. Fast pyrolysis – Effect of wood drying on the yield and properties of bio-oil. BioResources. 2007. Vol. 2(4). P. 699-706

27. Demirbas A. The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis. Fuel Proc Technol. 2007, 88:591–7. https://doi.org/10.1016/j.fuproc.2007.01.010.

28. Bridgewater T. Aston University; A guide to fast pyrolysis of biomass for fuels and chemi-cals. PyNe Guide 1; March, 1999. URL: http://courses.washington.edu/pse104/images/newslet6.pdf

29. Vivarelli S., Tondi G. Pyrolysis Oil: annovative liquid biofuel for heating. The COMBIO Project. Int. Workshop “Bioenergy for a sus; tainable development”, Casino Vina del Mar – Chile, 8–9 November 2004.

30. Oasmaa A., Meier D. Norms and standards for fast pyrolysis liquids: 1. Round robin test. J Anal. Appl. Pyrol. 2005. Vol. 73 (2). P. 323–334. DOI: 10.1016/j.jaap.2005.03.003.

31. Shihadeh A. Rural Electrification from Local Resources: Biomass Pyrolysis Oil Combu-stion in a Direct Injection Diesel Engine. PhD Thesis. 1998, MIT. URL: http://hdl.handle.net/1721.1/43601.

32. Elliott D.C. Historical Developments in Hydroprocessing BioOils. Energy Fuels. 2007. Vol. 21. P. 1792-1815. DOI: 10.1021/ ef070044u.

33. Panchuk M., Kryshtopa S., Sładkowski A., Panchuk A. Environmental Aspects of the Production and Use of Biofuels in Transport. Ecology in Transport: Problem and solution, Lectore Notes sn Networks and System124. Springer Nature Switzerland AG. 2020.

34. Bradley D. European Market Study for BioOil (Pyrolysis Oil). URL: http://www.unece.lsu.edu/biofuels/documents/2007July/SRN_009.pdf (accessed on 15 December 2006)

35. Geletukha G., Kramar V., Elik O., Antochsuk T., Titkov V. Comprehensive analysis of the Ukrainian biomass pellets market. Kiev. 2016. URL: http://uabio.org/en/activity/uabio-analytics/3164-comprehensive-analysis-of-biomass-boilers-market-in-ukraine

36. Prins W., Wagenaar B.M. Review of the rotating cone technology for flash pyrolysis of biomass. Proc. of the International Conference on Gasification and Pyrolysis of Biomass. Stuttgart, Germany, 9-11 April 1997. Р. 316-326.

37. Bradley D. European Market Study for BioOil (Pyrolysis Oil). URL: http://www.unece.lsu.edu/biofuels/documents/2007July/SRN_009.pdf (accessed on 15 December 2006)

38. Venderbosch R.H., Prins W. Fast pyrolysis technology development. Biofuels, Bioproducts and Biorefining. 2010. P. 178-208. Published Online: 19 March. https://doi.org/10.1002/bbb.205

39. Solantausta Y., Oasmaa A., Sipila¨ K., Lindfors C., Lehto J., Autio J., Jokela P., Alin J., Heiskanen J. Bio-oil Production from Biomass: Steps toward Demonstration, Energy Fuels. 2012. Vol. 26. P. 233-240. DOI: 10.1021/ef201109t

40. Czernik S., Bridgwater A.V. Overview of appli; cations of biomass fast pyrolysis oil. Energy & Fuels. 2004. Vol. 18 (2). P. 590–598. DOI: 10.1021/ef034067u

41. Venderbosch R.H., van de Beld L., Prins W. Entrained flow gasification of bio-oil for syntes gas. 12thEuropian conference and technology Exibision on Biomass for energy, Industry and climate Protection, Amsterdam, The Netherlands, Juni 17-21, 2002.

42. Sturzl R. The commercial co-firing of RTP bio-oil at the Manitowoc Public Utilities power generation Station. June 1997. URL: http://www.ensyn.com/docs/manitowoc/manitowoc.

43. Moses C. Fuel-Specification Considera-tions for Biomass Liquids. Proceedings of Biomass Pyrolysis Oil Properties and Combustion Meeting, Estes Park, CO., NREL-CP430-7215, September 26-28, 1994. P. 362-382.

44. Ahnger А., Graham R.G. Liquid Biofuel for Diesel Power Production: Techno-Economic Assessment. Proc. of the 9th Europ. Bioenergy Conf., Copenhagen, Denmark, June 24-27, 1996. Pergamon. Vol. 3. Р. 1614-1619.

45. Bridgwater A.V. Biomass Pyrolysis System Design. Proc. of the 8th European Bioenergy Conference. Vienna, Austria, October 3–5, 1994, Vol. 2. P. 1591–1602.

46. Ahnger А., Graham R.G. Liquid Biofuel for Diesel Power Production: Techno-Economic Assessment. Proc. of the 9th Europ. Bioenergy Conf., Copenhagen, Denmark, June 24-27, 1996. Pergamon. Vol. 3. Р. 1614-1619.

Published

27.12.2024

How to Cite

Panchuk, A. M., Panchuk, M. V., & Deineha, R. O. (2024). PROSPECTS FOR INTRODUCING BIOMASS PYROLYSIS TECHNOLOGIES TO INCREASE OF VOLUMES BIOFUEL PRODUCTION. Oil and Gas Power Engineering, (2(42), 137–145. https://doi.org/10.31471/1993-9868-2024-2(42)-137-145

Issue

Section

NEW SOLUTIONS IN MODERN EQUIPMENT AND TECHNOLOGIES

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 

You may also start an advanced similarity search for this article.