IMPROVEMENT OF METHODS FOR RESEARCHING THE ELEMENTAL COMPOSITION OF BIOFUELS AND RAW MATERIALS FOR THEIR PRODUCTION

Authors

Keywords:

lignocellulosic biomass; elemental composition; non-destructive testing methods.

Abstract

Lignocellulosic biomass is a reliable source of renewable energy and important chemicals for industrial use. Its popularity is due to its high prevalence, limited environmental impact and relatively low price. One of the most promising methods for converting this type of raw material into biofuels is thermal treatment. Thermal treatment allows for the formation of a wide range of useful gaseous, liquid and solid products, depending on the reaction conditions. The main and most important factor determining the efficiency of processing processes is the elemental composition of the initial biomass, its change during processing, and the composition of the finished products. Rapid and reliable elemental chemical analysis of biomass and its processing products is important for commercialising production. The paper discusses the main methods for determining the composition of biomass. In particular, classical infrared spectroscopy with Fourier transform, X-ray photoelectron spectroscopy and X-ray fluorescence analysis. The features of each method are analysed. The classic method used to determine the elemental composition of biomass is highly accurate but also labour-intensive, expensive and requires the use of hazardous chemicals that generate large amounts of waste. The Fourier transform infrared spectroscopy (FTIR) method is quite effective for a faster assessment of the elemental composition of biomass, but at the same time it is considered insufficiently sensitive. X-ray photoelectron spectroscopy (XPS) is a surface-sensitive method and useful for studying the carbon, oxygen, and nitrogen content in various organic materials, but to obtain accurate experimental data when using this method to determine the elemental composition of biomass, mathematical dependencies are needed to calibrate the measuring instruments using the classical method. The use of X-ray fluorescence (XRF) to determine the chemical composition of biomass basically confirms the effectiveness of the method. The experimental data obtained have deviations in the range from ±10% to ±20%, which seems quite satisfactory for many applications. At the same time, for some elements, systematic errors (deviations) can be quite pronounced and amount to 50–100%. Therefore, in our opinion, this area is in its early stages of development and requires further research. The research conducted in this work allows us to conclude that non-destructive research methods that can be carried out on site are promising for determining the chemical composition of biomass during processing. This approach contributes to the commercialisation of biofuel production processes and trade in both raw materials and finished products.

Downloads

Download data is not yet available.

References

He Z., Liu Y., Kim H.J., Tewolde H., Zhang, H. Fourier transform infrared spectral features of plant biomass components during cotton organ development and their biological implications. Journal of Cotton Research. 2022. 5:11. https://doi.org/10.1186/s42397-022-00117-8.

Tsaousis P.C., Sarafidou M., Soto Beobide A. Quantification of plant biomass composition via a single FTIR absorption spectrum supported by reference component extraction/isolation protocols. Biomass Conv. Bioref. 2025/ 15, 25273–25288. https://doi.org/10.1007/s13399-025-06858-1

Xu, F., Yu, J., Tesso, T., Dowell, F., Wang, D. Qualitative and Quantitative Analysis of Lignocellulosic Biomass Using Infrared Techniques: A Mini-Review. Applied Energy. 2013 104, 801-809. https://doi.org/10.1016/j.apenergy.2012.12.019

Avramova A., Radoykova Hr., Valchev I. V., Mehandjiev D. R. X-ray photoelectron spectroscopy investigations of lignocellulosic materials Bulgarian Chemical Communications. 2018.Volume 50, Issue 3.P. 411 – 416.

Panchuk M., Kryshtopa S., Shlapak L., Kryshtopa L., Panchuk A., Yarovyi V., Sladkovskyi A. Main Trends of Biofuels Productionin Ukraine. Transport Problems. 2017.Vol. 12 (4). P. 95-103.

Panchuk A., Panchuk M., Deineha R. Perspektyvy vprovadzhennia tekhnolohii pirolizu biomasy dlia zbilshennia vyrobnytstva biopalyv. Naftohazova enerhetyka. 2024. №2.S. 137 -144.

Panchuk M., Kryshtopa S., Sladkovski A., Panchuk A. Environmental Aspects of the Production and Use of Biofuels in Transport. Ecology in Transport: Problem and solution, Lectore Notes sn Networks and System 124. Springer Nature Switzerland AG 2020. P. 115-168.

Nzediegwu C., Naeth M.A., Chang S.X. Elemental composition of biochars is affected by methods used for its determination. J. Anal. Appl. Pyrolysis 2021, 156, 105174.

Channiwala S. A., & Parikh P. P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2022. 81(8). Р.1051–1063.

Feng D., Zhao Y., Zhang Y., Gao J., Sun S. Changes of biochar physiochemical structures during tar H2O and CO2 heterogeneous reforming with biochar. Fuel Process Technol. 2017. 165. P. 72–79.

Panchuk A.M., Panchuk M.V. Osoblyvosti vyznachennia khimichnoho skladu biomasy. Materialy tez dopovidei XIIV Mizhnarodnoi naukovo-praktychnoi konferentsii (m. Chernihiv, 2–23 travnia 2025 r.): u 2 t. / Natsionalnyi universytet «Chernihivskapolitekhnika» [ta in.] ; vidp. za vyp.: Prystupa Anatolii Leonidovych [ta in.]. – Chernihiv: NU «Chernihivska politekhnika», 2025. – T.1 - 259.

Wang S., Ai S., Nzediegwu C., Kwak J.H., Islam M.S., Li Y., Chang S.X. Carboxyl and hydroxyl groups enhance ammonium adsorption capacity of iron (III) chloride and hydrochloric acid modified biochars. Bioresour Technol. 2020.309:123390. doi: 10.1016/j.biortech.2020.123390.

Srinivasan P., Sarmah A.K. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Sci Total Environ. 2015 Jan 1;502:471-80. doi: 10.1016/j.scitotenv.2014.09.048.

Khan S.A., Khan S.B., Khan L.U., Farooq A., Akhtar K., Asiri A.M. Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. In: Sharma, S. (eds) Handbook of Materials Characterization. 2018. Springer, Cham. https://doi.org/10.1007/978-3-319-92955-2_9

Cu, Y.. Liao Y., Sun, Y., Wang, W., Wu, J., Dai, W., Huang T. Advanced XPS-Based Techniques in the Characterization of Catalytic Materials: A Mini-Review. Catalysts 2024, 14, 595. https://doi.org/10.3390/catal14090595

Shard A.G., Counsell J.D.P., Cant, D.J.H., Smith, E.F., Navabpour, P., Zhang, X., Blomfield C.J. Intensity calibration and sensitivity factors for XPS instruments with monochromatic Ag Lα and Al Kα sources. Surf. Interface Anal. 2019. 51, 763–773.

Cerciello F., Forgione A., Lacovig, P., Lizzit, S., Fabozzi, A., Salatino P., Senneca, O. The Influence of Mineral Matter on X-Ray Photoelectron Spectroscopy Characterization of Surface Oxides on Carbon. Appl. Sci. 2025. 15, 2993. https://doi.org/10.3390/app15062993

Kim S., Zhou, S., Hu Y., Acik M., Chabal Y.J., Berger C. de Heer, W., Bongiorno A., Riedo E. Room-temperature metastability of multilayer graphene oxide films. Nat. Mater. 2012. 11. P. 544.

Grams J. Surface analysis of solid products of thermal treatment of lignocellulosic biomass. Journal of Analytical and Applied Pyrolysis. 2022.16. 105429.

Rhein F., Sehn, T., Meier M.A.R. Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning. Sci Rep. 2025. 15, 2904 https://doi.org/10.1038/s41598-025-86378-0

Tsaousis P.C., Sarafidou M., Soto Beobide A. Quantification of plant biomass composition via a single FTIR absorption spectrum supported by reference component extraction/isolation protocols. Biomass Conv. Bioref. 2025. https://doi.org/10.1007/s13399-025-06858-1

Cui Y., Liao, Y., Sun Y., Wang W., Wu J., Dai W., Huang, T. Advanced XPS-Based Techniques in the Characterization of Catalytic Materials: A Mini-Review. Catalysts. 2024, 14, 595. https://doi.org/10.3390/catal14090595

Krishna D. N. G., Philip, J. Review on surface-characterization applications of x-ray photoelectron spectroscopy (xps): recent developments and challenges. Applied Surface Science Advances. 2022. 12, 100332. https://doi.org/10.1016/j.apsadv.2022.100332

Stevie F. A., Garcia R., Shallenberger J., Newman J. G., Donley C. L. (2020). Sample handling, preparation and mounting for XPS and other surface analytical techniques. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020. 38(6). Article 063202. https://doi.org/10.1116/6.0000421

Bennet F., Müller A., Radnik J., Hachenberger Y., Jungnickel H., Laux P., Luch A., Tentschert J. Preparation of Nanoparticles for ToF-SIMS and XPS Analysis. J. Vis. Exp. 2020 (163), e61758, doi:10.3791/61758.

Yaashikaa P.R., Kumar P.S., Varjani S., Saravanan A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol Rep (Amst). 2020. Nov 21;28:e00570. doi: 10.1016/j.btre.2020.e00570.

Jiang G., Husseini G. A., Baxter L. L., Linford M. R. Analysis of straw by x-ray photoelectron spectroscopy. Surface Science Spectra. 2005. 11(1). Р. 91-96.

Rose N. L., Yang H., Turner S. D., Simpson, G. L. (2012). An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochimica et Cosmochimica Acta. 2012. 82 P. 113-135. https://doi.org/10.1016/j.gca.2010.12.026

El-Naggar A, Shaheen S.M., Ok Y.S, Rinklebe J. Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions. The Science of the Total Environment. 2018 May;624:1059-1071. DOI: 10.1016/j.scitotenv.

Vysotskyi P. P., Monastyrskyi H. Ye., Duzheruchenko O. H. Vykorystannia efektiv dyfraktsii dlia vyznachennia metodom renthenofluorestsentnoho analizu kontsentratsii vuhletsiu u staliakh. XXI Vseukrainska naukovo-praktychna konferentsiia studentiv, aspirantiv ta molodykh vchenykh «Teoretychni i prykladni problemy fizyky, matematyky ta informatyky» (Ukraina, m. Kyiv, 11-12 travnia 2023 r.) : materialy konferentsii. – Kyiv : KPI im. Ihoria Sikorskoho, 2023. – S. 17-20.

Lachance G.R. Quantitative X-ray fluorescence analysis: Theory and application. Chichester ; New York : Wiley, c1994.

Beckhoff B., Kanngießer B., Langhoff N.,Wedell R., Wolff H. Handbook of Practical X-Ray Fluorescence Analysis. Springer. Berlin. Germany. 2006.

Raveendran K., Ganesh A., and Khilar K.C. Influence of Mineral Matter on Biomass Pyrolysis Characteristics. Fuel,1995. 74, 1812-1822.

http://dx.doi.org/10.1016/0016-2361(95)80013-8

Patwardhan P.R., Satrio J.A., Brown R.C., Shanks B.H. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol. 2010. 101(12):4646-55. doi: 10.1016/j.biortech.2010.01.112.

Le D. M., Sørensen H. R., Knudsen N. O., Meyer, A. S. (2015). Implications of silica on biorefineries – interactions with organic material and mineral elements in grasses. Biofuels, Bioproducts and Biorefining, 2015. 9, 109-121. https://doi.org/10.1002/bbb.1511

Le D.M., Sørensen H.R., Meyer A. S. Elemental analysis of various biomass solid fractions in biorefineries by X-ray fluorescence spectrometry, Biomass and Bioenergy. 2017. Vol. 97. P. 70-76.

Wang B., Liu N., Wang S., Li X., Li R., Wu Y. Study on Co-Pyrolysis of Coal and Biomass and Process Simulation Optimization. Sustainability 2023. 15, 15412. https://doi.org/10.3390/su152115412

Panchuk A., Panchuk M., Sładkowski A., KryshtopaS., Kryshtopa L. Methanol potential as an environmentally friendly fuel for ships. Naše More. 2024. Vol. 71( 2). P.75-82

Andersen L. K., Morgan T. J., Boulamanti, A. K., Alvarez, P., Vassilev, S. V., Baxter, D. Quantitative X-ray fluorescence analysis of biomass: Objective evaluation of a typical commercial multi-element method on a WD-XRF spectrometer. Energy Fuels. 2013.27. P. 7439− 7454.

Margui E., Hidalgo M., Queralt I. Multielemental fast analysis of vegetation samples by wavelength dispersive X-ray fluorescence spectrometry: Possibilities and drawbacks. Spectrochim. Acta, Part B 2005.60. P. 1363−1372.

Margui E., Queralt, I., Hidalgo M. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material. Trends Anal. Chem. 2009,28 (3). P. 362−372.

Morgan T., George A., Boulamanti A., Álvarez P., Adanouj I., Dean C., Vassilev S., Baxter D., Andersen L. Quantitative X-ray Fluorescence Analysis of Biomass (Switchgrass, Corn Stover, Eucalyptus, Beech, and Pine Wood) with a Typical Commercial Multi-Element Method on a WD-XRF Spectrometer. Energy and Fuels. 2015. 29 (3); P. 1669-1685. JRC87616

Endriss F., Kuptz D., Wissmann, D., Hartmann H., Dietz E, Kappler A.,Thorwarth H. Evaluation and Optimization of an X‑ray Fluorescence Analyzer for Rapid Analysis of Chemical Elements in Solid Biofuels. Energy and Fuels. 2024. 38.17. P.16426-16440.

Published

19.12.2025

How to Cite

PANCHUK, M. (2025). IMPROVEMENT OF METHODS FOR RESEARCHING THE ELEMENTAL COMPOSITION OF BIOFUELS AND RAW MATERIALS FOR THEIR PRODUCTION. Oil and Gas Power Engineering, (2(44). Retrieved from https://nge.nung.edu.ua/index.php/nge/article/view/792

Issue

Section

NEW SOLUTIONS IN MODERN EQUIPMENT AND TECHNOLOGIES

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.