MODEL OF INTERACTION WITH THE INNER SURFACE OF AN ORIENTED WELLBORE EQUIPPED WITH AN AXIAL OSCILLATION TOOL

Authors

  • Ya. S. Grydzhuk Ivano-Frankivsk National Technical University of Oil and Gas, Carpathians Street 15, Ivano-Frankivsk, UA 76019 Ukrainee
  • I. Yu. Mokhnii Ivano-Frankivsk National Technical University of Oil and Gas, Carpathians Street 15, Ivano-Frankivsk, UA 76019 Ukrainee
  • T. I. Kondur Ivano-Frankivsk National Technical University of Oil and Gas, Carpathians Street 15, Ivano-Frankivsk, UA 76019 Ukrainee
  • O. O. Slabyi Ivano-Frankivsk National Technical University of Oil and Gas, Carpathians Street 15, Ivano-Frankivsk, UA 76019 Ukrainee
  • V. F. Tsaruk ТОВ «Денімекс Юкрейн»; 01135, м. Київ, вул. Казарменна, 4Д пр. 91А

DOI:

https://doi.org/10.31471/1993-9868-2024-2(42)-61-70

Keywords:

directional drilling, friction forces, layout of the bottom of the drill string, generator of axial oscilla-tions, mathematical model, Lagrange’s equation.

Abstract

Today, due to advancements in scientific and technical fields, drilling inclined wells has become increasingly popular. A crucial factor in ensuring wells' safe and efficient construction is the selection of the optimal layout for the bottom of the drill string. This layout should provide the necessary control over the well trajectory while also achieving high technical and economic performance in the well construction process. The choice of the drill string layout depends on the available technological equipment, as well as the technical and geological conditions of the drilling site. This choice must be well justified. One common method for justifying the drill string bottom's layout selection is modeling the well drilling process. This work focuses on a mathematical model that addresses the interaction of a specialized two-support layout of the drill string, which is equipped with an axial oscillation generator, and the walls of the well. We analyzed various drill string layouts used in drilling directional well sections and developed a mechanical and mathematical model based on these layouts to achieve this. In our simulation, we assumed that friction exists between the well walls and the drill string, described by the Coulomb model while neglecting the influence of the flushing fluid flow. The mathematical model was derived using the second-order Lagrange equation, employing a method that introduces fictitious degrees of freedom for the drill string. This approach allows us to determine the reactions of the elements using the principle of possible displacements. As a result, we obtained a system of differential equations, which reveals the forces of contact interaction between the supports of the drill string and the walls of the well. This proposed model enables us to assess the forces exerted by the drill string on the well walls, taking into account the kinematic characteristics of the drill string movement, the geometric parameters of the layout, the axial load on the bit, and the friction parameters.

 

Downloads

Download data is not yet available.

References

1.Tian J., Hu S., Li Y., Yang Z., Yang L., Cai X., Zhu Y., Fu C. Vibration characteristics analysis and experimental study of new drilling oscillator. Advances in Mechanical Engineering. 2016. Т. 8. No 6. 168781401665209. DOI: 10.1177/1687814016652090.

2. Chudyk I. I., Livinskyi A. M., Al-Tanakchi A., Pastukh A. M. Osoblyvosti zastosuvannia oriientovanykh KNBK u protsesi burinnia skerova-nykh sverdlovyn. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. 2019. No 1. P. 17-24. DOI: 10.31471/1993-9973-2019-1(70)-17-24. [in Ukrainian]

3. Chudyk I. I., Livinskyi A. M., Biletska I. Ya. Rozshyrennia tekhnolohichnykh mozhly-vostei oriientovanykh komponovok nyzu burylnoi kolony. Naukovyi visnyk IFNTUOG. 2017. No 2(43). P. 26-32. [in Ukrainian]

4. Chudyk I. I., Livinskyi A. M. Vyvchennia tekhnolohichnykh mozhlyvostei oriientovanykh opornykh komponovok nyzu burylnoi kolony. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. 2017. No 3(64). P. 31-39. [in Ukrainian]

5. Ghasemloonia A., Geoff Rideout D., Butt S. D. Analysis of multi-mode nonlinear coupled axialtransverse drillstring vibration in vibration assisted rotary drilling. Journal of Petroleum Science and Engineering. 2014. Т. 116. C. 36–49. DOI: 10.1016/j.petrol.2014.02.014.

6. Bailey J. R., Elsborg C. C., James R. W., Pastusek P. E., Prim M. T., Watson W. W. Design Evolution of Drilling Tools to Mitigate Vibrations. SPE/IADC Drilling Conference, Amsterdam. 03 May 2013. DOI: 10.2118/163503-MS

7. Grydzhuk J., Chudyk I., Velychkovych A., Andrusyak A. Analytical estimation of inertial properties of the curved rotating section in a drill string. Eastern-European Journal of Enterprise Technologies, 2019. No 1. Р. 6-14. DOI: 10.15587/1729-4061.2019.154827

8. Chudyk І., Velychkovych A., Grydzhuk Ja. A modeling of the inertia properties of a drill string section as a continual bent rotating rod. SOCAR Proceedings. 2021. No 4. Р. 24-32. DOI: 10.5510/OGP20210400610

9. Chernova M. Ye., Kuntsiak Ya. V. Mozhlyvosti zmenshennia syl tertia ta prykhoplen burylnoi kolony na pokhylo-skerovanykh ta horyzontalnykh diliankakh stovbura hlybokykh sverdlovyn. Porodorazrushaiushchyi i metallo-obrabatyvaiushchyi instrument – tekhnyka y tekhnolohyia eho yzghotovlenyia y prymenenyia. 2018. Vol. 20. P. 63-70. [in Ukrainian]

10. Bui S., Ngo H., Nguyen N., Blackwell G., Trethewey J. Axial Oscillation Tool Combined with Optimized Bent Motor BHA's Successfully Drills Record 3D Horizontal Granitic Basement Section in Vietnam. SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane, Australia, 23-25 October 2018. SPE 2018. DOI: 10.2118/191872-MS.

11. Mills K., Menand S., Grissom R. Using Aluminum Drill Pipe with Axial Oscillation Tools to Significantly Improve Drilling Performance. Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 13-16 November 2017. 2017. DOI: 10.2118/188865-MS.

12. Zhang H., Ashok P., Oort E., Shor R. Investigation of pipe rocking and agitator effectiveness on friction reduction during slide drilling. Journal of Petroleum Science and Engineering. 2021. Vol. 204. Art. ID 108720. DOI: 10.1016/j.petrol.2021.108720.

13 Shi X., Huang W., Gao D., Zhu N. Optimal design of drag reduction oscillators by considering drillstring fatigue and hydraulic loss in sliding drilling. Journal of Petroleum Science and Engineering. 2022.Vol. 08. Art. ID. 109572. DOI: 10.1016/j.petrol.2021.109572.

14. Slabyi O. O., Grydzhuk Ya. S., Kondur T. I., Mokhnii I. Yu. Imitatsiina model burylnoi kolony z ustanovlenym heneratorom osovykh kolyvan. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. 2023. No 3(88). P. 49–60. DOI: 10.31471/1993-9973-2023-3(88)-49-60. [in Ukrainian]

15. Slabyi O. O., Grydzhuk Ya. S., Tsaruk V. F., Kondur T. I., Mokhnii I. Yu. Vyznachennia optymalnoho mistsia roztashuvannia heneratora osovykh kolyvan v burylnii koloni. Naftohazova enerhetyka. 2024. No 1(41). P. 86–95. DOI: 10.31471/1993-9868-2024-1(41)-86-95 [in Ukrainian]

16. Li F., Ma X. Overview of the Development of Rotary Steerable Systems. IOP Conference Series: Materials Science and Engineering. 2020. Т. 799. DOI: 10.1088/1757-899X/799/1/012005.

17. Zhang C., Zou W., Cheng N. Overview of rotary steerable system and its control methods. 2016 IEEE International Conference on Mechatronics and Automation, Harbin, 07-10 August. 2016. P. 1559–1565. DOI: 10.1109/ICMA.2016.7558796.

18. Fasano A., Marmi S. Analytical mechanics. Oxford. New York: Oxford University Press, 2006. 772 p.

Published

24.01.2025

How to Cite

Grydzhuk, Y. S., Mokhnii, I. Y., Kondur, T. I., Slabyi, O. O., & Tsaruk, V. F. (2025). MODEL OF INTERACTION WITH THE INNER SURFACE OF AN ORIENTED WELLBORE EQUIPPED WITH AN AXIAL OSCILLATION TOOL. Oil and Gas Power Engineering, (2(42), 61–70. https://doi.org/10.31471/1993-9868-2024-2(42)-61-70

Issue

Section

MATERIALS, STRUCTURES AND EQUIPMENT OF PETROLEUM COMPLEX FACILITIES

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.