Improvement of methods for researching the elemental composition of biofuels and raw materials for their production

Authors

  • А. М. Panchuk Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., Ivano-Frankivsk, 76019
  • V. М. Boichuk Vasyl Stefanyk Carpathian National University Shevchenko Str., 57, Ivano-Frankivsk, 76000, Ukraine
  • P. М. Prysiazhniuk Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., Ivano-Frankivsk, 76019
  • М. V. Panchuk Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., Ivano-Frankivsk, 76019 https://orcid.org/0000-0002-4898-2707
  • V. І. Sheketa Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., Ivano-Frankivsk, 76019

DOI:

https://doi.org/10.31471/1993-9868-2025-2(44)-249-260

Keywords:

lignocellulosic biomass; elemental composition; non-destructive testing methods.

Abstract

Lignocellulosic biomass is a reliable source of renewable energy and important chemicals for industrial use. Its popularity is due to its high prevalence, limited environmental impact and relatively low price. One of the most promising methods for converting this type of raw material into biofuel is thermal treatment. Thermal treatment allows for the formation of a wide range of useful gaseous, liquid, and solid products depending on the reaction conditions. The main and most important factor determining the efficiency of processing is the elemental composition of the initial biomass, its change during processing, and the composition of the finished products. Rapid and reliable elemental analysis of biomass and its processing products is important for commercialising production. The paper discusses the main methods for determining the composition of biomass, in particular, classical, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray fluorescence analysis. The features of each method are analysed. The classical method used to determine the elemental composition of biomass is highly accurate but, at the same time, labour-intensive, expensive and requires the use of hazardous chemicals that generate large amounts of waste. The Fourier transform infrared spectroscopy (FTIR) method is quite effective for a faster assessment of the elemental composition of biomass, but it is considered insufficiently sensitive. X-ray photoelectron spectroscopy (XPS) is a surface-sensitive method and useful for studying the carbon, oxygen and nitrogen content in various organic materials, but to obtain accurate experimental data when using this method to determine the elemental composition of biomass, mathematical dependencies are required to calibrate the measuring instruments using the classical method. The use of X-ray fluorescence (XRF) to determine the chemical composition of biomass basically confirms the effectiveness of the method. The experimental data obtained have deviations in the range from ±10% to ±20%, which seems quite satisfactory for many applications. At the same time, for some elements, systematic errors (deviations) can be quite pronounced and amount to 50–100%. Therefore, in our opinion, this direction is at an early stage of development and needs improvement. The research conducted in this work gives grounds to conclude that non-destructive control methods that can be carried out on site are promising for determining the elemental composition of biomass during processing. This approach contributes to the commercialisation of biofuel production processes and trade in both raw materials and finished products.

Downloads

Download data is not yet available.

References

1. He Z., Liu Y., Kim H. J., Tewolde H., Zhang H. (2022). Fourier transform infrared spectral features of plant biomass components during cotton organ development and their biological implications. Journal of Cotton Research, 5, 11. https://doi.org/10.1186/s42397-022-00117-8.

2. Tsaousis P. C., Sarafidou M., Soto Beobide A. (2025). Quantification of plant biomass composition via a single FTIR absorption spectrum supported by reference component extraction/ isolation protocols. Biomass Conv. Bioref, 15, 25273–25288. https://doi.org/10.1007/s13399-025-06858-1.

3. Xu F., Yu J., Tesso T., Dowell F., Wang D. (2013). Qualitative and Quantitative Analysis of Lignocellulosic Biomass Using Infrared Techniques: A Mini-Review. Applied Energy, 104, 801–809. https://doi.org/10.1016/j.apenergy.2012.12.019.

4. Avramova A., Radoykova Hr., Valchev I. V., Mehandjiev D. R. (2018). X-ray photoelectron spectroscopy investigations of lignocellulosic materials. Bulgarian Chemical Communications, 50(3), 411–416. https://www.researchgate.net/publication/328800658_X-ray_photoelectron_spectroscopy_investigations_of_lignocellulosic_materials.

5. Panchuk M., Kryshtopa S., Shlapak L., Kryshtopa L., Panchuk A., Yarovyi V., Sladkovskyi A. (2017). Main Trends of Biofuels Production in Ukraine. Transport Problems, 12(4), 95–103. https://dspace.nuft.edu.ua/handle/123456789/26654.

6. Панчук А. М., Панчук М. В., Дейнега Р. О. Перспективи впровадження технологій піролізу біомаси для збільшення обсягів виробництва біопалив. Нафтогазова енергетика. 2024. № 2(42). С. 137–145 / Panchuk A. M., Panchuk M. V., Deineha R. O. (2024). Perspektyvy vprovadzhennia tekhnolohii pirolizu biomasy dlia zbilshannia obsiahiv vyrobnytstva biopalyv [Prospects for introducing biomass pyrolysis technologies to increase of volumes biofuel production]. Naftohazova enerhetyka [Oil and Gas Power Engineering], 2(42), 137–145. https://doi.org/10.31471/1993-9868-2024-2(42)-137-145 [in Ukrainian].

7. Panchuk M., Kryshtopa S., Sładkowski A., Panchuk A. (2020). Environmental Aspects of the Production and Use of Biofuels in Transport. In Sładkowski A. (Eds.), Ecology in Transport: Problems and Solutions (Vol. 124). Springer, Cham. https://doi.org/10.1007/978-3-030-42323-0_3.

8. Nzediegwu C., Naeth M. A., Chang S. X. (2021). Elemental composition of biochars is affected by methods used for its determination. J. Anal. Appl. Pyrolysis, 156, 105174. https://doi.org/10.1016/j.jaap.2021.105174.

9. Channiwala S. A., Parikh P. P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4.

10. Feng D., Zhao Y., Zhang Y., Gao J., Sun S. (2017). Changes of biochar physiochemical structures during tar H2O and CO2 heterogeneous reforming with biochar. Fuel Process Technol, 165, 72–79. https://doi.org/10.1016/j.fuproc.2017.05.011.

11. Панчук А. М., Панчук М. В. Особливості визначення хімічного складу біомаси. Теоретичні і прикладні проблеми фізики, математики та інформатики: матеріали тез доповідей XІV Міжнародної науково-практичної конференції, м. Чернігів, 2–23 травня 2025 р. У 2 т. Чернігів: НУ «Чернігівська політехніка», 2025. Т. 1. С. 259. / Panchuk A. M., Panchuk M. V. (2025). Osoblyvosti vyznachennia khimichnoho skladu biomasy [Peculiarities of determining the chemical composition of biomass]. In Teoretychni i prykladni problemy fizyky, matematyky ta informatyky: materialy tez dopovidei XІV Mizhnarodnoi naukovo-praktychnoi konferentsii (Vol. 1, p. 259). NU «Chernihivska politekhnika». URL: https://conf.chnu.edu.ua/conf/2025/fizmat [in Ukrainian].

12. Wang S., Ai S., Nzediegwu C., Kwak J. H., Islam M. S., Li Y., Chang S. X. (2020). Carboxyl and hydroxyl groups enhance ammonium adsorption capacity of iron (III) chloride and hydrochloric acid modified biochars. Bioresour Technol, 309, 123390. https://doi.org/10.1016/j.biortech.2020.123390.

13. Srinivasan P., Sarmah A. K. (2015). Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Sci Total Environ, 502, 471–480. https://doi.org/10.1016/j.scitotenv.2014.09.048.

14. Khan S. A., Khan S. B., Khan L. U., Farooq A., Akhtar K., Asiri A. M. (2018). Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. In Sharma S. (Eds.), Handbook of Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-319-92955-2_9.

15. Cu Y., Liao Y., Sun Y., Wang W., Wu J., Dai W., Huang T. (2024). Advanced XPS-Based Techniques in the Characterization of Catalytic Materials: A Mini-Review. Catalysts, 14(9), 595. https://doi.org/10.3390/catal14090595.

16. Shard A. G., Counsell J. D. P., Cant D. J. H., Smith E. F., Navabpour P., Zhang X., Blomfield C. J. (2019). Intensity calibration and sensitivity factors for XPS instruments with monochromatic Ag L$alpha$ and Al K$alpha$ sources. Surf. Interface Anal, 51, 763–773. https://doi.org/10.1002/sia.6647.

17. Cerciello F., Forgione A., Lacovig P., Lizzit S., Fabozzi A., Salatino P., Senneca O. (2025). The Influence of Mineral Matter on X-Ray Photoelectron Spectroscopy Characterization of Surface Oxides on Carbon. Appl. Sci, 15(6), 2993. https://doi.org/10.3390/app15062993.

18. Kim S., Zhou S., Hu Y., Acik M., Chabal Y. J., Berger C. de Heer W., Bongiorno A., Riedo E. (2012). Room-temperature metastability of multilayer graphene oxide films. Nat. Mater, 11, 544. https://hal.science/hal-00911814v1/document.

19. Grams J. (2022). Surface analysis of solid products of thermal treatment of lignocellulosic biomass. Journal of Analytical and Applied Pyrolysis, 16, 105429. https://doi.org/10.1016/j.jaap.2021.105429.

20. Rhein F., Sehn T., Meier M. A. R. (2025). Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning. Sci Rep, 15, 2904. https://doi.org/10.1038/s41598-025-86378-0.

21. Tsaousis P. C., Sarafidou M., Soto Beobide A. (2025). Quantification of plant biomass composition via a single FTIR absorption spectrum supported by reference component extraction/isolation protocols. Biomass Conv. Bioref. https://doi.org/10.1007/s13399-025-06858-1.

22. Cui Y., Liao Y., Sun Y., Wang W., Wu J., Dai W., Huang T. (2024). Advanced XPS-Based Techniques in the Characterization of Catalytic Materials: A Mini-Review. Catalysts, 14, 595. https://doi.org/10.3390/catal14090595.

23. Krishna D. N. G., Philip J. (2022). Review on surface-characterization applications of x-ray photoelectron spectroscopy (xps): recent developments and challenges. Applied Surface Science Advances, 12, 100332. https://doi.org/10.1016/j.apsadv.2022.100332.

24. Stevie F. A., Garcia R., Shallenberger J., Newman J. G., Donley C. L. (2020). Sample handling, preparation and mounting for XPS and other surface analytical techniques. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 38(6), 063202. https://doi.org/10.1116/6.0000421.

25. Bennet F., Müller A., Radnik J., Hachenberger Y., Jungnickel H., Laux P., Luch A., Tentschert J. (2020). Preparation of Nanoparticles for ToF-SIMS and XPS Analysis. J. Vis. Exp, 163, e61758. https://doi.org/10.3791/61758.

26. Yaashikaa P. R., Kumar P. S., Varjani S., Saravanan A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol Rep (Amst), 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570.

27. Jiang G., Husseini G. A., Baxter L. L., Linford M. R. (2005). Analysis of straw by x-ray photoelectron spectroscopy. Surface Science Spectra, 11(1), 91–96. https://doi.org/10.1116/11.20040801.

28. Rose N. L., Yang H., Turner S. D., Simpson G. L. (2012). An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochimica et Cosmochimica Acta, 82, 113–135. https://doi.org/10.1016/j.gca.2010.12.026.

29. El-Naggar A., Shaheen S. M., Ok Y. S., Rinklebe J. (2018). Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions. The Science of the Total Environment, 624, 1059–1071. https://doi.org/10.1016/j.scitotenv.2017.12.067.

30. Висоцький П. П., Монастирський Г. Є., Дужерученко О. Г. Використання ефектів дифракції для визначення методом рентгенофлуоресцентного аналізу концентрації вуглецю у сталях. Теоретичні і прикладні проблеми фізики, математики та інформатики: матеріали конференції. Київ: КПІ ім. Ігоря Сікорського, 2023. С. 17–20. / Vysotskyi P. P., Monastyrskyi H. Ye., Duzheruchenko O. H. (2023). Vykorystannia efektiv dyfraktsii dlia vyznachennia metodom renthenofluorestsentnoho analizu kontsentratsii vuhletsiu u staliakh [Using diffraction effects to determine carbon concentration in steels by X-ray fluorescence analysis]. In Teoretychni i prykladni problemy fizyky, matematyky ta informatyky: materialy konferentsii (pp. 17–20). KPI im. Ihoria Sikorskoho. URL: https://ela.kpi.ua/handle/123456789/62314 [in Ukrainian].

31. Lachance G. R. (1994). Quantitative X-ray fluorescence analysis: Theory and application. Wiley.

32. Beckhoff B., Kanngießer B., Langhoff N., Wedell R., Wolff H. (2006). Handbook of Practical X-Ray Fluorescence Analysis. Springer. https://link.springer.com/book/10.1007/978-3-540-36722-2.

33. Raveendran K., Ganesh A., Khilar K. C. (1995). Influence of Mineral Matter on Biomass Pyrolysis Characteristics. Fuel, 74(12), 1812–1822. https://doi.org/10.1016/0016-2361(95)80013-8.

34. Patwardhan P. R., Satrio J. A., Brown R. C., Shanks B. H. (2010). Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol, 101(12), 4646–4655. https://doi.org/10.1016/j.biortech.2010.01.112.

35. Le D. M., Sørensen H. R., Knudsen N. O., Meyer A. S. (2015). Implications of silica on biorefineries – interactions with organic material and mineral elements in grasses. Biofuels, Bioproducts and Biorefining, 9, 109–121. https://doi.org/10.1002/bbb.1511.

36. Le D. M., Sørensen H. R., Meyer A. S. (2017). Elemental analysis of various biomass solid fractions in biorefineries by X-ray fluorescence spectrometry. Biomass and Bioenergy, 97, 70–76. https://doi.org/10.1016/j.biombioe.2016.12.018.

37. Wang B., Liu N., Wang S., Li X., Li R., Wu Y. (2023). Study on Co-Pyrolysis of Coal and Biomass and Process Simulation Optimization. Sustainability, 15(21), 15412. https://doi.org/10.3390/su152115412.

38. Panchuk A., Panchuk M., Sładkowski A., Kryshtopa S., Kryshtopa L. (2024). Methanol potential as an environmentally friendly fuel for ships. Naše More, 71(2), 75–82. https://doi.org/10.17818/NM/2024/2.5.

39. Andersen L. K., Morgan T. J., Boulamanti A. K., Alvarez P., Vassilev S. V., Baxter D. (2013). Quantitative X-ray fluorescence analysis of biomass: Objective evaluation of a typical commercial multi-element method on a WD-XRF spectrometer. Energy Fuels, 27(12), 7439−7454. https://doi.org/10.1021/ef4015394.

40. Margui E., Hidalgo M., Queralt I. (2005). Multielemental fast analysis of vegetation samples by wavelength dispersive X-ray fluorescence spectrometry: Possibilities and drawbacks. Spectrochim. Acta, Part B, 60(10-11), 1363−1372. https://doi.org/10.1016/j.sab.2005.08.004.

41. Margui E., Queralt I., Hidalgo M. (2009). Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material. Trends Anal. Chem, 28(3), 362−372. https://doi.org/10.1016/j.trac.2008.11.011.

42. Morgan T., George A., Boulamanti A., Álvarez P., Adanouj I., Dean C., Vassilev S., Baxter D., Andersen L. (2015). Quantitative X-ray Fluorescence Analysis of Biomass (Switchgrass, Corn Stover, Eucalyptus, Beech, and Pine Wood) with a Typical Commercial Multi-Element Method on a WD-XRF Spectrometer. Energy and Fuels, 29(3), 1669–1685. https://doi.org/10.1021/ef502380x.

43. Endriss F., Kuptz D., Wissmann D., Hartmann H., Dietz E, Kappler A., Thorwarth H. (2024). Evaluation and Optimization of an X ray Fluorescence Analyzer for Rapid Analysis of Chemical Elements in Solid Biofuels. Energy and Fuels, 38(17), 16426–16440. https://doi.org/10.1021/acs.energyfuels.4c01771.

Published

19.12.2025

How to Cite

Panchuk А. М., Boichuk V. М., Prysiazhniuk P. М., Panchuk М. V., & Sheketa V. І. (2025). Improvement of methods for researching the elemental composition of biofuels and raw materials for their production. Oil and Gas Power Engineering, (2(44), 249–260. https://doi.org/10.31471/1993-9868-2025-2(44)-249-260

Issue

Section

NEW SOLUTIONS IN MODERN EQUIPMENT AND TECHNOLOGIES

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.