CALCULATION OF GAS DISTRIBUTION NETWORKS TAKING INTO ACCOUNT THE ROUTE PROFILE
DOI:
https://doi.org/10.31471/1993-9868-2024-2(42)-37-49Keywords:
gas dynamic calculation, pipeline route profile, geometric slope, hydrostatic pressure, gas dynamic energy consumption gas networksAbstract
To date, the issues of construction of new and reconstruction of existing gas distribution networks of Ukraine are directly related to the improvement of their design and operation methods. Part of Ukraine's gas distribution networks has been laid or is planned to be laid in areas with difficult topographical conditions. First of all, this concerns the gas supply systems of populated areas in the western regions of Ukraine. To date, gas dynamic calculations of external gas networks are carried out without taking into account the influence of the route profile due to a lack of understanding of the importance of this factor and its failure to be taken into account in regulatory methods. The aim of this work is to determine the influence of the route profile on the gas dynamic energy consumption of high, medium and low pressure gas distribution networks. On the basis of the Bernoulli equation for the steady state of the movement of real gas in the pipeline, and on the basis of the results of theoretical studies, calculation formulas were obtained for determining the pressure change in gas distribution networks from high, medium to low pressure, taking into account the influence of the route profile, features of their geometric structure and regime parameters. For low pressure gas networks, the hydrostatic head is also taken into account. It has been found that for gas networks of all pressure categories with a fixed gas flow, the degree of refinement of gas-dynamic pressure losses taking into account the profile of the pipeline depends linearly on the geometric slope of the section. The coefficient of proportionality is described by a power function of the Reynolds number in a linear dependence with an approximation reliability of more than 99%. It was found that for a gas pipeline with a diameter of 108x3 mm, with a relatively small geometric slope of 0.1 and an average load, the refinement of the gas-dynamic energy consumption is: at high pressure 60%; at medium pressure 48%; at low pressure with additional consieration of hydrostatic pressure 101%. The results of the study demonstrate the need to take into account the profile of the pipeline when designing and calculating the operation of gas distribution networks of all pressure classes.
Downloads
References
1. Hrupa Naftohaz [Elektronnyi resurs]: Hrupa Naftohaz na 12 % zbilshyla vydobutok hazu v I kvartali 2024–ho porivniano z analohichnym periodom mynuloho roku. URL: https://www.naftogaz.com/news/naftogaz–group–increased–gas–production–by–12. [in Ukrainian].
2. Ksenych A. I. Rozrakhunok hazovykh merezh z vykorystanniam formuly Kolbruka. Naftohazova enerhetyka. 2007. No 4(5). P. 81-85. [in Ukrainian].
3. DBN V.2.5-20:2018. Hazopostachannia. [Chynnyi vid 2019-07-01]. Vyd. ofits. Kyiv: Minrehion Ukrainy, 2019. 113 p. [in Ukrainian].
4. Kodeks hazorozpodilnykh merezh. URL: https://zakon.rada.gov.ua/laws/show/z1379-15 #Text (data zvernennia: 01.10.2024). [in Ukrainian].
5. Serediuk M. D. Rozrakhunok koefitsiienta hidravlichnoho oporu v hazovykh merezhakh nasele-nykh punktiv. Mizhnarodnyi naukovyi zhurnal «Internauka». 2022. No 8 (127). P. 51-60. DOI: 10.25313/2520-2057-2022-8-8156. [in Ukrainian].
6. Serediuk M. D., Velykyi S. V. Analiz metodiv vyznachennia hazodynamichnoi enerhvytratnosti hazovykh merezh naselenykh punktiv. Naftohazova enerhetyka, 2022. No 2(38). P .51–61. DOI: 10.31471/1993-9868-2022-2(38)-51-61. [in Ukrainian].
7. Ksenych A. I., Serediuk M. D. Urakh-?vannia vplyvu profiliu trasy na rezultaty hidravlichnykh rozrakhunkiv hazovykh merezh nyzkoho tysku. Rozvidka ta rozrobka naftovykh ta hazovykh rodovyshch. 2010. No 1(34). P. 138-143. [in Ukrainian].
8. Serediuk M. D., Ksenych A. I. Vykor-?stannia barometrychnoi formuly dlia vrakhuvannia vplyvu profiliu trasy na rezultaty hidravlichnoho rozrakhunku hazovykh merezh. Naukovyi visnyk Ivano-Frankivskoho natsi-?nalnoho tekhnichnoho universytetu nafty i hazu. 2010. No 3(25). P. 97-101. [in Ukrainian].
9. Szoplik J. Changes in gas flow in the pipeline depending on the network foundation in the area. Journal of Natural Gas Science and Engineering. 2017. Vol. 43. P. 1–12. URL: https://doi.org/10.1016/j.jngse.2017.03.020.
10. González A. H., Jesús Manuel de la Cruz, De Andrés–Toro B., Risco–Martín J.L. Modeling and simulation of a gas distribution pipeline network. Applied Mathematical Modelling. 2009. Vol. 33. No. 3. P. 1584–1600. URL: https://doi.org/10.1016/j.apm.2008.02.012.
11. Kasperovych V. K. Truboprovidnyi transport hazu. Ivano-Frankivsk: IFNTUNH.1999. 198 p. [in Ukrainian].
12. Obschesoyuznyie normyi tehnologi-cheskogo proektirovaniya. Magistralnyie truboprovodyi. Chast 1. Gazoprovodyi: ONTP 51-1-85. VNIIEgazprom, 1986. [in Russian]
13. Serediuk M. D. Proiektuvannia ta ekspluatatsiia hazovykh merezh: navch. posib. Ivano-Frankivsk: IFNTUNH, 2022. 144 p. [in Ukrainian].
14. DSTU EN ISO 6976:2020. Pryrodnyi haz. Obchyslennia teploty zghoriannia, hustyny, vidnosnoi hustyny ta chysla Vobbe na osnovi komponentnoho skladu. [Chynnyi vid 2021-10-01]. Vyd. ofits. Kyiv: DP «UkrNDNTs», 2021. 56 p. [in Ukrainian].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Oil and Gas Power Engineering
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.