Approbation of the tectonophysical model of fracture estimation at the deposits of the inner zone of the Precarpathian Foredeep

Authors

  • S. S. Kurovets Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019
  • І. V. Artym Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019
  • Т. V. Zderka Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019

DOI:

https://doi.org/10.31471/1993-9868-2020-2(34)-15-25

Keywords:

tectonophysical model, anticline, field of oil and gas, fracturing, Pre-Carpathian Foredeep, sandstone.

Abstract

 

A promising method for assessing the fracturing of reservoir rocks is the analysis of their stress-strain state by mathematical modeling of tectonophysical processes in the sandy-silty flysch strata. Previous studies were aimed at substantiating the main approaches to tectonophysical modeling of sandy-silty strata in order to assess the fracturing of oil and gas promising deposits. However, the developed model of the symmetric anticline cannot be used in the conditions of the Intristic zone of the Pre-Carpathian Foredeep due to the complex forms of layers. The model was improved and tested at such well-known deposits of the Inner Zone of the Pre-Carpathian Foredeep as Starosambir and Pivdenno-Hvizdetsk. A corresponding model for an asymmetric anticline with different layer thickness of the reservoir rock of the Yamna formation of the Paleocene of the Starosambir deposit has been constructed. The simulation results showed, that the zone of increased fracturing is located within the crest of the anticline. This statement is proved by field studies of the core. Increased fracturing within the cut area was not detected. The upper layer of sandstone of the menilite formation of the South Hvizdetsk deposit almost completely belongs to the fractured, pore-fractured type of reservoir. The question arose as to whether it was possible to explain such an abnormally large area of increased fracturing by the developed model. To solve the problem, the boundary conditions for reproducing the real deformation of the sandstone formation were improved. According to the results, the area of increased fracturing almost completely covers the layer. Thus, the results of approbation of the tectonophysical model within deposits of the Inner Zone of the Pre-Carpathian Foredeep indicate that with the help of the developed model it is possible to research complex structures on tectonic fracturing.

References

Stavrogin A. N., Tarasov B. G. Eksperimentalnaya fizika i mehanika gornyih porod. SPb: Nauka, 2001. 343 p. [in Russian]

Atkinson P.M., Foody G.M., Darby S.E., Wu F. GeoDynamics, 2005. 445 p.

Ismail-Zadeh A., Tackley P. Computational Methods for Geodynamics, 2010.313 p.

Backers T. Fracture Toughness Determination and Micromechanics of Rock Under Mode I and Mode II Loading. Diss, 2004. 137 р.

Noorian-Bidgoli M. Strength and deformability of fractured rocks. Diss. Stockholm, 2014. 101 р.

Guo H. Rock cutting studies using fracture mechanics, 1990. 223 р.

Shen Baotang, Stephansson O., Rinne M. Modelling Rock Fracturing Processes: A Fracture Mechanics Approach Using FRACOD, 2014. 173 p.

De Borst R. Computational Methods for Fracture in Porous Media: Isogeometric and Extended Finite Element Methods, 2018. 206 p.

Salze M., Martinod J., Guillaume B., Kermarrec J.-J., Ghiglione M.C., Sue C. Trench-parallel spreading ridge subduction and its consequences for the geological evolution of the overriding plate: Insights from analogue models and comparison with the Neogene subduction beneath Patagonia. Tectonophysics. 2018. doi : 10.1016/j.tecto.2018.04.018

Guillaume B., Hertgen S., Martinod J., Cerpa N.G. Slab dip, surface tectonics : How and when do they change following an acceleration/slow down of the overriding plate ?, Tectonophysics. 2018. 726, 110-120, doi : 10.1016/j.tecto.2018.01.030.

Brun J.-P., Sokoutis D., Tirel C., Gueydan F., Van Den Driessche J., Beslier M.-O., in press. Crustal versus mantle core complexes, Tectonophysics, doi : 10.1016/j.tecto.2017.09.017.

Bajolet F., Chardon D., Martinod J., Gapais D., Kermarrec J.J. Syn-convergence flow inside and at the margin of orogenic plateaux : Lithospheric-scale experimental approach. J.G.R. Solid Earth, 2015. 120, 6634-6657, doi : 10.1002/2015JB012110.

Kydonakis K., Brun J.-P. Sokoutis D. North Aegean core complexes, the gravity spreading of a thrust wedge, J. Geophys. Res. Solid Earth, 2015. 120, doi : 10.1002/2014JB011601.

Driehaus L., Nalpas T., Ballard J.-F. Interaction between deformation and sedimentation in a multidecollement thrust zone : Analogue modelling and application to the Sub-Andean thrust belt of Bolivia. Journal of Structural Geology. 2014. 65, 59-68, doi : 10.1016/j.jsg.2014.04.003

Gapais D., Jaguin J., Cagnard F., Boulvais P. Pop-down tectonics, fluid channelling and ore deposits within ancient hot orogens. Tectonophysics. 2014. 618, 102-106.12, doi : 10.1016/j.tecto.2014.01.027

Philippon M., Brun J-P., Gueydan F. Sokoutis D. The interaction between Aegean back-arc extension and Anatolia escape since Middle Miocene. Tectonophysics. 2014. doi : 10.1016/j.tecto.2014.04.039

Zanella A., Cobbold P.R., Le Carlier de Veslud C. Physical modelling of chemical compaction, overpressure development, hydraulic fracturing and thrust detachments in organic-rich source rock. Marine and Petroleum Geology. 2014. 55, 262-274, doi : 10.1016/j.marpetgeo.2013.12.017.

Barrier L., Nalpas T., Gapais D., Proust J.-N. Impact of synkinematic sedimentation on the geometry and dynamics of compressive growth structures : Insights from analogue modelling. Tectonophysics. 2013. 608, 737-752.5, doi : 10.1016/j.tecto.2013.08.005

Driehaus L., Nalpas T., Cobbold P.R., Gelabert B., Sàbat F. Effects of margin-parallel shortening and density contrasts on back-arc extension during subduction: Experimental insights and possible application to Anatolia. Tectonophysics. 2013. 608, 288-302, doi : 10.1016/j.tecto.2013.09.028 .

Midtkandal I., Brun J.P., Gabrielsen R.H., Huismans R.S. Control of lithosphere rheology on subduction polarity at initiation : Insights from 3D analogue modelling. Earth and Planetary Science Letters. 2013. 361, 219–228, doi : 10.1016/j.epsl.2012.10.026

Reber J.E., Galland O., Cobbold P.R., Le Carlier de Veslud C. Experimental study of sheath fold development around a weak inclusion in a mechanically layered matrix. Tectonophysics. 2013. 586, 130-144, doi:10.1016/j.tecto.2012.11.013.

Soleimany B., Nalpas T., Sàbat F. Role of the compression angle on the reactivation of an inverse fault. Geologica Acta. 2013. 11, 265-276.

Artym I.V. Otsinka tektonichnoi trishchynuvatosti porid-kolektoriv za dopomogoiu metodu skinchennykh elementiv. Molodui vchenyi. Geologicjni nauky. 2018. No 2. pp. 6-10. DOI: 10.32839.

Kurovets S., Artym I. Reservoir rocks fracturing model development. East European Science Journal. 2019. No 3. Р. 24-29. ISSN: 2468-5380.

Kurovets S.S., Artym I.V. Otsinka vplyvu rozkydu znachen mekhanichnykh kharakterystyk porid-kolektoriv Prykarpattia na yikh tektonichnu trishchynuvatist. Naftohazova haluz Ukrainy. 2019. № 2. P. 19-33.[in Ukrainian]

https://en.wikipedia.org/wiki/Factor_of_ safety

Published

2020-12-26

How to Cite

Куровець, С. С. ., Артим, І. В., & Здерка, Т. В. (2020). Approbation of the tectonophysical model of fracture estimation at the deposits of the inner zone of the Precarpathian Foredeep. Oil and Gas Power Engineering, (2(34), 15–25. https://doi.org/10.31471/1993-9868-2020-2(34)-15-25

Issue

Section

GEOLOGY, EXPLORATION AND GEOPHYSICS OF OIL AND GAS FIELD