DEVELOPMENT OF MODEL OF GAS MOVEMENT WHEN THERE ARE UNSTEADY ISOTHERMAL PROCESSES IN TRUNK PIPELINES
Keywords:
gas transportation system; laws of conservation of mass, momentum and energy; gas flow mode; mathematical modeling; numerical methods.Abstract
The article is devoted to the methods of mathematical modeling of unsteady gas flow in the pipelines. Various technological problems of gas-dynamic modeling, which an engineer faces during designing the flow modes, are presented for analysis. The source data required for calculations and formulation of the problem for unsteady isothermal calculations are described in detail. The basic system of equations describing the laws of conservation of mass, momentum and energy in the gas flow is presented in the article. Since these are differential equations with partial derivatives, a conservative difference scheme for their numerical solution was developed and a mathematical problem was posed to the system. This paper describes an algorithm for calculating the distribution of gas pressure and its flow rate based on time and coordinates with the given boundary conditions, such as “pressure at the beginning of the pipeline“ and “mass flow rate at the end of the pipeline”.
Downloads
References
1701-1710.
2 Квасников И.А. Термодинамика и статистическая физика: В 3-х т. Том 1. Теория равновесных систем: Термодинамика. – М.: Едиториал УРСС, 2002. – 240 с.
3 Квасников И.А. Термодинамика и статистическая физика: В 3-х т. Том 3. Теория неравновесных систем: Термодинамика. – М: Едиториал УРСС, 2002. – 448 с.
4 Абрамович Г.Н. Прикладная газовая динамика: в 2 ч. Часть 1. – М.: Наука, 1991. – 600 с.
5 Ландау Л. Д., Лифшиц Е.М. Теоретическая физика: В 1 0 т . Том 6. Гидродинамика. – М.: Наука, 1986. – 736 с.
6 Самарский А.А., Попов Ю.П. Разностные методы решения задач газовой динамики. – М.: Наука, 1992. – 424 с.
7 Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров): Пер. с англ. под ред. И.Г. Арамановича. – М.: Наука, 1973. – 832 с.
8 Голуб Дж., Ван Лоун Ч. Матричные вычисления: Пер. с англ. под ред. В.В. Воеводина. – М.: Мир, 1999. – 548 с.