INVESTIGATION OF GAS-DYNAMIC PROCESSES IN PIPELINE COMMUNICATIONS DURING THEIR TRENCHLESS RECONSTRUCTION WITH THE TECHNOLOGY "TRACTION PISTON"

  • K. A. Poliarush PJSC "Kyivenergo" SVP "Kiev Thermal Networks" RTM "Pechersk"; 01103, Kyiv, str. Freight, 1, tel. (044) 529-88-75
Keywords: Аirflow, CFD simulation, dynamic grid, flow lines, Navier-Stokes equation, polyethylene pipe, pressure loss, stretching

Abstract

The technology of the trenchless reconstruction of pipeline communications "Traction Piston", which consists in running a new polyethylene pipeline into a steel one worn by pigis described. At the same time, in order to maintain the necessary pressure in the cavity, the space between the new polyethylene pipeline and the worn steel one is sealed.

A 3D modeling of the annulus and space behind the piston, where the complex turbulent flow of air flows, is carried out. A CFD modeling of gas-dynamic processes in the annulus and space behind the piston while laying a worn steel pipeline with a polyethylene pipeline in the ANSYS Fluent software system is performed. The mathematical model is based on the solution of the Navier-Stokes equations and the continuity of the flow closed by a two-parameter turbulence model of Launder-Sharma with the use of a wall function with corresponding initial and boundary conditions. A dynamic grid model was used to simulate the motion of the piston and the polyethylene pipeline. The type of adjustment of the dynamic grid parameters during the stroke of a new polyethylene pipeline into a defective steel one – Layering was chosen.

The simulation results were visualized in the postprocessor of the software complex by constructing flow lines, velocity vectors, pressure fields on the contours and in the longitudinal section of the annulus and space behind the piston. The exact values of velocity, pressure at different points between the annulus and space behind the piston were determined. The structure of the air flow in the cavity and interstitial space is studied. The places of slowdown and acceleration of air flow, falling and increase of pressure are found. The loss of pressure in the annular space is determined.

References

David W. Rusch internal repair of pipeline leaks using pressure – activated sealant [Теxt]. SPE. Report for Eastern Regional Meeting in Charleston. West Virginia, USA., 15–17 September 2004.

In-pipe robot based on selective drive mechanism [Теxt] / S. Roh, D. Kim, J. Lee [and others]. International Journal of Control, Automation and Systems. Vol. 7. P. 105–112.

Kutz G. E. Predicting I/I Reduction for Planning Sewer Rehabilitation [Теxt]. Trenchless Pipeline Projects: Practical Applications. New York : ASCE, 1997. P. 103–110.

Lueke S. J., Ariaratnam T. S. Rehabilitation of underground infrastructure utilizing trenchless pipe replacement [Теxt]. Practice Periodical on Structural Design and Construction, ASCE. 2001. Vol. 6. No. 1. P. 25–34.

McKim A. R. Selection method for trenchless technologies [Теxt]. Journal of Infrastructure Systems, ASCE. 1997. Vol. 3. No. 3. P. 119–125.

Roh S.G., Choi H.R. Differential-drive in-pipe robot for moving inside urban gas pipelines [Теxt]. IEEE Transactions on Robotics. 2005. Vol. 21. No 1. P. 1–17.

Zwierzchowska A. Technologie bez-wyko-powej budowy sieci gazowych, wodociagowych i kanalizacyjnych [Теxt]. Kielce : Politechnika swietokrzyska, 2006. 180 p.

Poliarush K. A., Doroshenko Ya. V., Tykhonov S. I., Babii A. R. Suchasni tekhnolohii beztransheinoho remontu teplohazovykh merezh. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. 2016. No 1(58). P. 41–51.

Doroshenko Ya.V., Poliarush K.A., Zapukhliak V.B. Rozroblennia tekhnolohii beztransheinoi rekonstruktsii truboprovidnykh komunikatsii ochysnym porshnem. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. 2018. No 3(68). P. 12–18.

Pat. 129088 Ukraina, MPK F16L 1/028. Prystrii dlia beztransheinoi rekonstruktsii truboprovidnykh komunikatsii / Doroshenko Ya.V., Poliarush K.A., Zapukhliak V.B. (Ukraina). – No 201802905; Zaiavl. 22.03.2018; Opubl. 25.10.2018, Biul. № 20. – 3 p.

Saeidbakhsh M., Rafeeyan M., Ziaei-Rad S. Dynamic analysis of small pigs in space pipelines [Теxt]. Oil & Gas Science and Technology. 2009. Vol. 64. No 2. Р. 155–164.

Tolmasquim S., Nieckele A. Design and control of pig operations through pipelines [Теxt]. Journal of Petroleum Science and Engineering. 2008. Vol. 62. No 3. Р. 102–110.

Hrudz V. Ya., Mykhalkiv V. B., Rozghoniuk V. V., Rudko V. P. Keruvannia rezhymom roboty hazoprovodu v period provedennia profilaktychnykh ochyshchen [Tekst]. Naft. i haz. prom-st. 1998. No 6. P. 37–38.

Hrudz V. Ya., Bakaiev V. V., Hrudz Ya. V., Rozen H. Matematychne modeliuvannia protsesu rukhu intelektualnoho porshnia po hazoprovodu. Naft. i haz. prom-st. 2000. No 1. P. 46–47.

Hrudz V. Ya., Bakaiev V. V., Hrudz Ya. V., Rozen H. Rehuliuvannia rukhu intelektualnoho porshnia zminoiu tekhnolohichnoi skhemy liniinoi dilianky [Tekst]. Naft. i haz. prom-st. 2001. No 1. P. 44–45.

Hrudz Ya. V. Rozrobka metodiv rehuliuvannia rezhymu roboty hazoprovodiv v protsesi yikh diahnostuvannia intelektualnymy porshniamy : dys. … kand. tekhn. nauk : spets. 05.15.13 "Naftohazoprovody, bazy ta skhovyshcha". Ivano-Frankivsk, 2001. 126 p.

Squires K., Eaton J. Particle response and turbulence modification in isotropic turbulence. Phys. Fluid. 1990. Vol. 2. No 7. P. 1191.

Published
2019-06-26
How to Cite
Poliarush, K. A. (2019). INVESTIGATION OF GAS-DYNAMIC PROCESSES IN PIPELINE COMMUNICATIONS DURING THEIR TRENCHLESS RECONSTRUCTION WITH THE TECHNOLOGY "TRACTION PISTON". Oil and Gas Power Engineering, (1(31), 43-53. https://doi.org/10.31471/1993-9868-2019-1(31)-43-53
Section
SCIENTIFIC AND TECHNICAL PROBLEMS OF PETROLEUM ENGINEERING