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Posensioaemocst 06yucnennss HaoiliHocmi 8 CKIAOHUX CUCMEMAx 3d HAs8HOCMI 8UNAOK0B020 HAOOPY OYIHOK
npayezoamuocmi enemenmis. Busigneno, wo nioxio Jemncmep-Lllepepa € 8i0nogionum mamemamuynum iHcmpy-
MeHmoM, AKUll 8i0nogioac nocmagneHum 3aoayam. [ eunaoky, KOau 63AEMO3ANEHCHOCMI eleMeHmi8 HegiooMi,
HABeOeHO MaKOXC OYIHKU eqheKMUSHOCMI CUCIEeMU NEPEeKOHAHb | npasdonodibrnicme yHKyil.

KntouoBi croBa: ckianHi cucteMu, HamiliHICT, CTpyKTypHa GyHKLis, minxin Jemmncrep-1lledepa

Pacemampusaemcest guiuucnenusi HAOCXHCHOCMU 8 CRONCHBIX CUCMeMAX NPU HATUNUU CIYYALHO20 HAGOpaA Oye-
HOK pabomocnocobrocmu snemenmos. Boisieneno, umo nodxod Jemncmep-Lllegepa sensemes coomeememayiouum
MAMeMamuyeckum UHCMpPYMEeHmoM, KOMOpblll COOMEemcmeyem noCmasieHuvim 3adavam. s cayuas, Ko2da
B3AUMO3ABUCUMOCTIU DTICMEHINO8 HEU3BECMIbL, NPUBLOCHBI MAKIICE OYEHKU ddexmuenocmu cucmemvl y6encoenil
U npasoonodoOHOCHMb PYHKYU.

KiroueBrble ClIoBa: CIIOXKHBIE CUCTEMBI, HAIEXKHOCTh, CTPYKTYpHas pyHkuus, noaxon demncrep-llledpepa

We consider the computation of multistate systems reliabilities in the presence of random set estimations for
the elements' working abilities. It turns out that the Dempster-Shafer approach is a suitable mathematical tool. For
the case that the interdependence of the elements is unknown, bounds for the system's performance belief and plau-

sibility functions are given as well.
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1 INTRODUCTION
Consider a system X with » components

E,,...E, (eg., parallel, serial, etc...). The per-
formance of each component is described by
x,e L, fori=1,..nwith L, beinga complete lat-
tice. Moreover, let xz(x],...,xn). These are the
basics for a rather general mathematical model of
multistate systems where performance often means
"working ability".

In applications, the L are usually finite sets
(e.g. nonnegative integers) or real numbers from
[0,1]. The system's performance is computed via
the structure function ®(x) (see. Def. 2.1). Con-
cerning the elements performance, it is assumed

that p(x,), i.e. the probability (density) for x, tak-

ing values from Z; is known. (Thus the perform-
ance of E; can be interpreted as a random variable
on the states of E; with range ;) This, however,
may be unrealistic, because the available informa-
tion for E; often concerns regions of performances
rather than single values.

Take for example L; = [0,1]. Then the per-
formance of E; might be characterised by the
statement "the probability of high performance is
medium", "mean performance is likely", "low per-
formance is not very probable". These linguistic
statements are vague and one could try to grasp
notions like "high", "medium", etc. by fuzzy sets
on L; (for the performance) and on [0,1] (for the
probabilities). For the sake of lucidity we will,
however, assume the performance regions to be
crisp subsets of L; and the probabilities to be crisp
numbers. Thus we are led to classical the Demp-
ster-Shafer Theory (DST).

Another problem concerns the correlation of
the elements with respect to their performance. The
assumption often made is that the elements behave
independently, what is not always the case. Here,
estimations for dependent elements are necessary.

2 MATHEMATICAL PREREQUISITES

Suppose to be given a system X with the
above properties. Then the Cartesian product
P=L,x..xL, is a complete lattice as well, and
we obviously have xeP. Further, let L be another
complete lattice. We suppose all lattices to be
bounded, i.e. for any of them there exist largest and
smallest elements which we uniformly denote by 0
and 1. For the different partial orders within the
lattices we always use "<". The following defini-
tions are well-known [3].

Definition 2.1. Let®: P— L be an isotonic
(non-decreasing) function (with respect to the par-
tial order in P) with @(0,...,0)=0,d(1,..,1)=1. We
call @ the structure function of 2.

Now we shortly present the basics of the
Dempster-Shafer Theory [4].

Definition 2.2. Let QO be a sample space, P be
a probability measure defined on a suitable o-
algebra over Q (e.g. the set of all subsets of Q).
Further, let be given a system of sets € (c-algebra)
and a set-valued function (random set) X :QQ— e.
Then we define for any set Ave the function m,:€
— [0,1]

by

my(A)=P (o :X(0)=A) (1)
where problems of measurability are left out-
side for simplicity. The lower index "X" will be
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omitted if misinterpretation is impossible. The sys-
tem {Al,..., AN} with 4, ve is called focal (w. r. to
X) if all 4; are nonempty, the mass assignments
m(A,) are positive for all i and the normalisation

condition Z m(A,)=1 is fulfilled. Hence, the

random siet X can be given by

{(4,:m(4))....(4y 3m(A4,))}. Now we define the

functions bel, pl (belief, plausibility) : € —> [0,1] by
bel(A)="> m(4).,

AcA

pl(d)= > m(4). (2)
A NA=D
Obviously, bel(A4) < pl(4). We emphasise that
the elements of &€ may intersect. This is typical for
situations with incomplete information. Presenta-
tions (1) and (2) are generalisations of the classical
random variable which is recovered for atomic 4,
(i.e., they are pairwise disjoint and 4, N A= im-
plies 4, c4).
Next we need the following generalisation of
DST to functions of random variables.
Definition 2.3. Suppose to be given M ran-
dom sets X, with ranges rg(X,) €¢; characterised

by focal elements {A,’(} and corresponding mass

assignments {m,’C }; i=1,....M. Here, m,’( :m(A,i)

M
Further, let be given a function f: 2(1rg(X ) —E,

where € is a suitable G-algebra and X means the
Cartesian product. Then we get the induced ran-

dom set Y=f (X Y. ¢ M) with focal elements
B, . =fl4 ...4")
ments

mklu-lﬁu :m(Bkl..,kM ):P(X] 214]11 ""’X/\/[ :A]é\z )

Notice that the entity {m k., § 1S NOt necessar-

and given mass assign-

ily normalised, because some of the B, , may

happen to be empty thus being excluded from fur-
ther consideration. Hence, a normalisation should
be performed in those cases and we may assume
the above entity to be normal.

Now, for any Bee we get in analogy to (2)

bel(By= D>, my ., .

Kiska

By, xy B
piB=" %  m . Q)
B/q:k""'}li‘%@

ey
The assumption that the m, , = are known is

rather restricting and may be unrealistic (as in sta-
tistics). If the random sets X, are independent then
1M
one can set my, ;=M ..My .
The case that information on X, originates

from several experts leads to Dempster's rule of
combination and is considered, e.g. in [5].
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In the case that the correlation between
Xi.....Xys is unknown one can derive estimations as
solutions of the following optimisation tasks (omit-
ting non-negativity conditions)

m min
Z Ky g {m/q _,kM}
g
By .y B
———>max
Z Wé"l,--eku . ag) (4)
kl,-««,k\l
Bfl kaB:ﬁ@
' .
p— ’ « 7
Z m, —m,q,l—l,...,M

R, kg
(here, prime means that the ith summand is
omitted).
Denoting the extremal values of (4) by

bel(B) and pi(B) one gets the obvious inclusion

bel(B)<bel(B)< pl(B)< pl(B). (5)
Remark 2.1. Solving (3) and (4) becomes
rather time-consuming for higher dimensions. To
keep ef-forts minimal, one should take sets B
which are of special interest for the random set Y.
In practise, often €; and € are set systems on the
real axis. This may lead to interval computation for
(3) and (4). For B one can take the set p(z) = {xVP :
x < z} thus obtaining the plausibility and belief
distribution functions

F ., F from
F(2)= pl(w(z)). F(z)=bel((z)).  (6)

Example 2.1. Consider two independent ran-
dom sets

X,={([0,04]:02),(103,0.8]:0.67).([0.7.1;0.13)} and
X, ={( [0,0.6];0.67).([0.8, 1];0.33)} characterising
the working ability of the two elements in a serial
system. Hence, we take function f as min (acting

on intervals by bounds). After simple computations
we get
Y={([0.0.41:02).([0.0.6]:0.54).([03,0.8):022), ([07, 1];0.04)} )

Assume we want to know bel and pl/ for an
"acceptable" work ability of the system character-
ised by the interval B=1[0.65,1]. From (3) we get
bel(B)=0.04, pl(B)= 0.22+0.04 =0.26, what is
not very high, because both systems mainly work
at medium level.

Therefore, the question for "medium" working
ability given by B =1[0.3,0.6] will be answered by
bel(B) = 0.54+0.22 = 0.76, pl(B) = 0.2+0.54+0.22
=0.96.

3 APPLICATION
RELIABILITY

In principle, the above apparatus easily ap-
plies to reliability determination of multistage sys-
tems. The in-formation on the elements perform-

ance is given by the random sets X, with focal

TO SYSTEM

elements 4, ce, (the latter being a suitable ex-

tension of L,).

The role of the function f'is now played by the
structure function @ that maps (in analogy to f)
into €, the latter being the corresponding extension
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of L. Often, the system is a connection of parallel-
serial subsystems what may ease the computation
of @ (e.g. by paths or cuts). A popular choice for
L, and L is the unit interval [0,1]. Usually, one

aims at computing the probability for a certain
minimal level a of the system's performance, it is

- _ 1 n
®(x) > o. This leads to B, , _CD(AkH“"Aiw
whereby the focal elements of X; may be taken as
intervals in the continuous case, i.e. 4, =|a, ,a, |-

For B we take [a,1]. Due to the isotonicity of ® we
get for (3)

bel(o)= z My .k

Ky ok,
o(dy .af ) 2a
pl(a)= Z my . .k, (7
Kok,
o(a ,.a' ) >o

T
where we used bel(a), pl(a) for bel(B), pl(B).

Though (7) is computationally easier to han-
dle than the general task (3), it may be of advan-
tage to de-compose the system X into smaller parts
what is typical for parallel-serial systems. The
most elementary subsystems are those consisting
of two elements. As a result we obtain random sets
describing the behaviour of the subsystems and
which can be combined to get the final estimation
with respect to (7) or (4).

4 CONCLUSION

In the present paper we considered possibili-
ties to compute reliabilities of multistate systems in
the presence of random set estimations for the ele-
ments' working ability (performance). It turned out
that the Dempster-Shafer approach is a suitable
mathematical tool. For the case that the interde-
pendence of the elements is unknown, bounds for
the system's performance belief and plausibility
functions are given as well.

From a practical point of view it may be
useful to consider fuzzy focal elements and/or
fuzzy sets B witch will be a topic for future
research. We also refer to [1,2,6] where
generalized implication operators are used to
characterize the degree of inclusion of fuzzy
sets.
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