The improvement of the method for developing the knowledge data base for the intelligent support system of decision making on the Fuzzy Logic principles

  • V. B. Kropyvnytska IFNTUOG; 76019, Ivano-Frankivsk, Karpatska str., 15, phone (0342) 727167
  • O. V. Yefremov IFNTUOG; 76019, Ivano-Frankivsk, Karpatska str., 15, phone (0342) 727167
  • H. N. Sementsov IFNTUOG; 76019, Ivano-Frankivsk, Karpatska str., 15, phone (0342) 727167
Keywords: knowledge data base, Fuzzy-controller, decision-making method, intelligent system.

Abstract

The article deals with the issue of Fuzzy-simulation of controllers for solving practical problems of automated control. The peculiarities of Fuzzy-simulation of cascade controllers in the Matlab environment are studied.
The presentation is accompanied by examples of the development of individual Fuzzy models and an illustration of
conducting all necessary operations with fuzzy sets.

References

СEI/IEC 61131-7:2000 Informationfl standard Part 7: Fuzzy Control programming. – 113 p.

Bartos F.I. Control engineering / F.I. Bartos. – Режим доступу http://asutp.ru/?p=600157.

Nowicki R. A Hierarchical Fuzzy System with Fuzzy international Variables / R. Nowicki, R. Seherer // Proceedings 9th Zittau Fuzzy Colloquium 2001, September 17-19, 2001 – p. 88-93.

Chaker N. Fuzzy Controller Structure Transformation / N. Chaker, M. Wagenknetcht, R. Hampel // World Scientific, Proceedings of the 3th International FLINS Workshop Antwert, Belgium, September, 1988, p. 99-10.

Fukuda T., HasegawaY., Shimojima K, Structure Organization of Hierarchical Fuzzy Model using Genetic Algorithm, Japanese Journal of Fuzzy Theory and Systems 7 (1995).

Hoffman F., Pfister G., Automatic Design of Hierarchical Fuzzy Controllers UsingGenetic Algorithms, 2nd European Congress on Intelligent Techniques and Soft - Computing (EUFIT-94) (1994), Aachen.

Hoffinan F., Pfister G., A New Learning Method for the Design of Hierarchical Fuzzy Controllers Using Messy Genetic Algorithms, Sixth International Fuzzy Systems Association World Congress (IFSA’95), vol.l (1995), pp. 249-252, Sao Paulo.

Maeda H., Yonekura H., Nobusada Y., Murakami S., Study on the Spread of Fuzziness in Multi-Stage Approximate Reasoning, Proceedings of IEEE Int. Confl on Fuzzy Systems – FUZZ-IEEE’95, Yokohama, Japan (1995), pp. 1455-1460.

Nowicki R., Scherer R., Hierarchical Fuzzy System With A New Approach To Transferring The Intermediate Variables, Proceedings of The 10th International – Conference on Systems Modelling Control SMC 2001, pp. 103-108.

Raju G.V.S., Zhou J., Kisner R.A., Hierarchical fuzzy control, in: Advances in Intelligent Control, Taylor & Francis Ltd, 1994, pp. 243-258.

Shimojima IC, Fukuda T., Hasegawa Y., Self-tuning fuzzy modelling with adaptive membership function, rules, and hierarchical structure based on genetic algorithm, Fuzzy Set and Systems,71(1995),295-309.

Wang L.-X., Analysis and Design of Hierarchical Fuzzy Systems, IEEE Transactions on Fuzzy Systems, vol 7, no. 5, (1999), October

Wang L.-X., Universal approximation by hierarchical fuzzy systems, Fuzzy Sets and Systems 93 (1998),223-230.

Duan J.-C., Chung F.-L., Cascading Fuzzy Neural Networks, Proceedings of 1999 IEEE international Fuzzy Systems Conference Proceedings. Seoul, Korea (1999), pp. 155-160.

Hampel R. Cascading of Multidimen – Sional Fuzzy Controlers / R. Hampel, N. Chaker // Proceedings 5th Zittau Fuzzy-Colloquium 1997, p. 140-149.

Леоненков А. Нечеткое моделирование в среде MATLAB fuzzyTECH / А. Леоненков. – Санкт-Петербург: БХВ-Петербург, 2003. – 736 с.

Published
2018-04-30
How to Cite
Kropyvnytska, V., Yefremov, O., & Sementsov, H. (2018). The improvement of the method for developing the knowledge data base for the intelligent support system of decision making on the Fuzzy Logic principles. Oil and Gas Power Engineering, (1(29), 26-41. https://doi.org/10.31471/1993-9868-2018-1(29)-26-41
Section
POWER ENGINEERING, CONTROL AND DIAGNOSTICS OF OIL AND GAS COMPLEX FACILITIES